الجمهورية الجزائرية الديمقراطية الشعبية

دورة: ماى 2016

وزارة التربية الوطنية

الشعبة:رياضيات+تقنى رياضى امتحان بكالوريا التعليم الثانوى (تجريبي)

الثانويات: لقرع محمد الضيف كركوبية خليفة - مفدي زكريا طبامة البياضة الجديدة ـ سيدي عون

المدة: 4 ساعات ونصف

اختبار في مادة: الرياضيات على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول (04 نقاط)

(الوحدة هي السنتيمتر) $A_{\scriptscriptstyle 0}B_{\scriptscriptstyle 0}=8$ و من المستوي بحيث $A_{\scriptscriptstyle 0}$

 $rac{3\pi}{4}$ ليكن S التشابه المباشر الذي مركزه النقطة A_0 ونسبته وزاويته

n نعرف متتالیة النقط (B_n) : ب (B_n) اب $= S(B_n)$ اب عدد طبیعی

 B_4 و B_3 , B_2 , B_1 : انشى النقط (1

كا أثبت أنه من أجل كل عدد طبيعي n المثلثان : A_0B_{n+1} و A_0B_{n+1} متشابهان (2

n نعرف متتالیة (u_n) ب با نعرف $u_n = B_n B_{n+1}$ ب نعرف متتالیة (3)

 $\frac{1}{2}$ أثبت أن (u_n) متتالية هندسية أساسها

 u_0 ب) أوجد عبارة u_n بدلالة u

 $\lim \sum_{n} \sum_{n} = u_0 + u_1 + \dots + u_n$: فرجد (بختن فرجد)

3x - 4y = 2 : المعادلة $\times \square$ حل في $\times \square$ حل في

nب ليكن (Δ) المستقيم العمو دي على المستقيم (A_0B_0) في النقطة (Δ) بيكن (Δ) بيكن (Δ) (Δ) التي من أجلها تكون النقطة B_n تنتمي إلى المستقيم

التمرين الثاني: (4,5نقاط)

: المعادلتين التاليتين \Box حل في مجموعة الأعداد المركبة

$$z^2 - 2(1 + \sqrt{3})z + 5 + 2\sqrt{3} = 0$$
 $z^2 - 2z + 5 = 0$

عداد C ، B ، A نعتبر النقط C ، B ، A نعتبر النقط C ، C ، C ، C ، C نعتبر النقط C ، C ، C ، C ، C ، C ، C .

 $z_D=1+\sqrt{3}-i$ ، $z_C=1-2i$ ، $z_B=1+\sqrt{3}+i$ ، $z_A=1+2i$: المركبة

أ) ماهي طبيعة المثلث ABC.

 (γ) المحيطة بالمثلث ABC جأ أثبت أن النقطة D تنتمى للدائرة المثلث أكتب معادلة الدائرة المحيطة بالمثلث

L(C) = D و L(A) = B : المعرف بالنقطى النقطى النقطى L(C) = D

اكتب العبارة المركبة للتحويل L ، ثم حدد طبيعته و عناصره المميزة.

$$(z'-(1+2\sqrt{3}))=e^{i\frac{\pi}{4}}(z-(1+2\sqrt{3}))$$
 : دوران عبارته المركبة : R -4

- حدد طبيعة التحويل $L \circ R$ ، و عناصره المميزة.

ـ الصفحة 4/1 ـ

التمرين الثالث: (4نقاط)

 $(o,\vec{i},\vec{j},\vec{k})$ الفضاء منسوب إلى معلم متعامد ومتجانس

لتكن (S)مجموعة النقط (x,y,z)من الفضاء والتي تحقق:

$$x^2 + y^2 + z^2 - 2x + 4y + 2z - 19 = 0$$

R مطح کرة , یطلب تحدید مرکز ها ω ونصف قطر ها (1) تحقق أن

(S) النقطة B(1,2,2) تنتمي إلى (2)

$$(P)$$
 ليكن (P) المستوي المماس لسطح الكرة (S) في النقطة (S) حدد معادلة ديكارتية لـ

ليكن (Q) المستوي ذو المعادلة :2x-2y+z+4=0 أحسب المسافة بين ω و (Q) ثم أستنتج (3

r اونصف قطرها I ونصف قطرها وفق دائرة (C) يطلب تحديد مركزها الما يتقاطعان وفق دائرة الما يتقاطعان وفق

التمرين الرابع: (07,5 نقاط)

(E) ... $y'+y=e^{-x}$: نعتبر المعادلة التفاضلية : I

(E) على المعادلة $u(x)=xe^{-x}$ على المعادلة المعادلة

 (E_0) ... y'+y=0 التفاضلية التفاضلية 2.

v+u كانت الدالة v المعرفة و القابلة للاشتقاق على تكون حلا للمعادلة (E_0) إذا وفقط إذا كانت v(E) حلا للمعادلة

- (E) استنتج جميع حلول المعادلة

.0 من أجل من أخذ القيمة 2 من أجل 4. عين الدالة $f_{\scriptscriptstyle 2}$ من أجل 4.

المعرفة على \square كما يلي: k:II عدد حقيقي معطى، نرمز ب f_k للدالة المعرفة على $f_{k}(x) = (x+k)e^{-x}$ $(O; \vec{i}, \vec{j})$ الى تمثيلها البياني في معلم متعامد و متجانس و $(O; \vec{i}, \vec{j})$.

 $_{+\infty}$ عين نهايات f_{k} عند عين نهايات

 f_k احسب f'_k من أجل كل عدد حقيقى χ ثم شكل جدول تغيرات الدالة f'_k

، $n \ge 1$ نعتبر متتالیة التکاملات (I_n) المعرفة ب $I_0 = \int\limits_0^\infty e^{-x} \, dx$ ومن أجل كل عدد طبیعي: الله

ـ الصفحة 4/2 ـ

$$I_n = \int_{-2}^0 x^n e^{-x} \, dx$$

1. أ- احسب القيمة المضبوطة L_{0} .

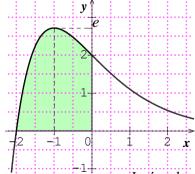
 I_1 و I_2 و القيم المضبوطة لـ I_2

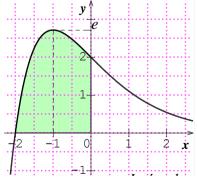
 f_k هو لدالة f_k المعرفة في الجزء \mathcal{C}_k هو المعرفة في الجزء \mathcal{C}_k

أ- باستعمال المعلومات المتوفرة في الشكل ، عين قيمة k المرفقة بالمنحني \mathcal{C}_{k}

ب- لتكن 5 مساحة الجزء المظلل (مقدرة بوحدة المساحات).

عبر عن S بدلالة I_0 و I_1 ثم استنتج القيمة المضبوطة للمساحة S





الموضوع الثاني

التمرين الأول: (04 نقاط)

$$(D)$$
 ولتكن النقطة $A\left(-1,2,3
ight)$ والمستقيم ومتجانس ومتجانس ومتجانس $\left(o\,,ec{i}\,,ec{j}
ight)$ والمستقيم

$$\begin{cases} x = 9 + 4t \\ y = 6 + t , t \in \square \end{cases}$$
 It is a substitution of the substitution of the

- A العمودي على المستقيم (D)ويشمل النقطة (P)
 - (D) ب تحقق أن النقطة B(-3,3,-4) تنتمي للمستقيم
 - (P) والمستوي B بين النقطة والمستوي (ج
- د) أحسب المسافة d بين النقطة A و المستقيم (D)وذلك بدلالة d والمسافة d , ثم أستنتج القيمة المضبوطة للمسافة d .

التمرين الثاني: (05نقاط)

$$.U_{n+2}=5U_{n+1}-4U_n$$
 : n عدد طبیعي عدد $U_1=1$ ، $U_0=0$ ، $U_1=0$ متتالیة معرفة بـ: $U_0=0$ ، $U_0=0$. $U_0=0$ احسب $U_0=0$. $U_0=0$.

- $U_{n+1}=4U_n+1$: ان n عدد طبیعی من أجل كل عدد من بالتراجع من أجل كل عدد طبیعی -2
- . تحقق أن $U_n: U_n$ عدد طبيعي ، ثم استنتج أن تا $U_n: U_n$ و المان فيما بينهما.

$$V_n = U_n + \frac{1}{3}$$
: ب $U_n = U_n + \frac{1}{3}$ باتالية معرفة على المتالية المت

- أ) بين أن المتتالية (V_n) هندسية ، عين أساسها و حدها الأول.
 - $\cdot n$ بدلالة V_n بدلالة (ب
 - ، $PGCD((4^6-1),(4^5-1))$ حسب (أ-4
- $PGCD((4^{n+1}-1),(4^n-1))$: n عين من أجل كل عدد طبيعي (ب
 - ما ادرس حسب قيم العدد الطبيعي n بواقى قسمة 4^n على 7.
- $S_n = V_0 + V_1 + \dots + V_{3n}$: حيث S_n المجموع N المجموع (ب
- .7 عين قيم العدد الطبيعي n حيث العدد $9S_n+8n$ عين قيم العدد الطبيعي

التمرين الثالث: (04,5 نقاط)

: عيد A: و A: نعتبر النقطتين (o,\vec{u},\vec{v}) عيد متعامد متعامد متعامد متعامد متعامد عيد المركب المنسوب إلى معلم متعامد متعامد متعامد متعامد متعامد عيد المنسوب ا

$$z_B = \sqrt{3} - i \quad \cdot \quad z_A = \sqrt{3} + i$$

B و A و نشئ النقطتين B و الشكل الأسى ، ثم أنشئ النقطتين B و B

$$\frac{\pi}{3}$$
 دوران مرکزه O ، و زاویته $r-2$

- r عين A' لاحقة النقطة A' عين A' عين A'
- . A' على الشكل الجبري ، ثم أنشئ النقطة $z_{A'}$

$$\frac{-3}{2}$$
 نحاك مركزه O ، و نسبته h -3

- . B' النقطة النقطة B' صورة B بالتحاكي A ، ثم أنشئ النقطة $Z_{B'}$ لاحقة النقطة النقطة B'
 - ω النقطة النقطة z_ω مركز الدائرة المحيطة بالمثلث ω المثلث ω ، و ω نصف قطرها ، و ω

$$z_{\omega}\overline{z_{\omega}}=R^{2}$$
: تحقق من صحة العبارات التالية $z_{\omega}\overline{z_{\omega}}=|z|^{2}$: أ

$$\left(z_{\omega}-2i\right)\left(\overline{z_{\omega}}+2i\right)=R^{2} \cdot \left(z_{\omega}+\frac{3\sqrt{3}}{2}-\frac{3}{2}i\right)\left(\overline{z_{\omega}}+\frac{3\sqrt{3}}{2}+\frac{3}{2}i\right)=R^{2}$$

 $\cdot R$ و قيمة $z_\omega - \overline{z_\omega} = 2i$ ، ثم استنتج أن $z_\omega + \overline{z_\omega} = \frac{-4\sqrt{3}}{3}$ و $z_\omega - \overline{z_\omega} = 2i$ ؛ استنتج أن

التمرين الرابع: (06,5 نقاط)

نعتبر الدالة f المعرفة على المجال $\int -1,+\infty$ المعرفة على المجال $f(x)=\frac{\ln(x+1)+|x|}{x+1}$: $f(x)=\frac{\ln(x+1)+|x|}{x+1}$ المستوي المنسوب إلى معلم متعامد ومتجانس $f(x)=\frac{\ln(x+1)+|x|}{(o,\vec{i},\vec{j})}$ (وحدة الطول 2cm

- ا أحسب: $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ ثم فسر النتيجتين بيانيا (1)
-]-1,0[من أجل [-1,0] ثم أستنتج اتجاه تغير الدالة f على المجال [-1,0] أ. أحسب f أمن أجل [-1,0] ثم أستنتج اتجاه تغير الدالة [-1,0] من أجل [-1,0] ثم أستنتج اتجاه تغير الدالة [-1,0] على المجال [-1,0] أحسب [-1,0]

$$0$$
 عند 0 ب 0 با أحسب 0 0 ب 0 با 0 با

0 عند النقطة ذات الفاصلة $\left(c_{_{f}}
ight)$: أكتب معادلتي المماسينك

- f شكل جدول تغيرات (3
- $x_{0}=rac{1}{e}-1$: عين معادلة للمستقيم $\left(\Delta
 ight)$ مماس $\left(\Delta
 ight)$ مماس (4
 - $\left(c_{f}
 ight)$ و $\left(\Delta
 ight)$ قم أنشئ $f\left(e-1
 ight)$ و (5
- (c_f) في المحدد بالمنحنى المجال $[0,+\infty[$, $[0,+\infty[$ على المجال على المجال $x=e^2-1$ و x=0 : ومحور الفواصل والمستقيمين ذا المعادلتين