الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية المدية دورة ماي 2023

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي التجريبي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة: التكنولوجيا (هندسة كهربائية)

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول نظام آلي لملء قارورات بالدواء

بحتوي الموضوع على 12 صفحة :

- العرض: من الصفحة 1 الى الصفحة 7
- العمل المطلوب : من الصفحة 8 الى الصفحة 9
- وثائق الاجابة : من الصفحة 10 الى الصفحة 12

ا - دفتر الشروط:

1. هدف التأليه: يهدف هذا النظام إلى ملء قارورات الدواء بكمية كبيرة وفي اقل وقت مع مراعات الجودة و الشروط الصحية.

2. وصف التشغيل: يحتوي النظام على 6 أشغولات عاملة.

الأشعولة 1: الإتيان بالقارورات

تأتي القارورات الواحدة تلو الاخرى عبر البساط الذي يديره المحرك M_1 ، وجود قارورتين امام الرافعتين A_1 و A_2 واللتان يكشف عنهما على التوالي بواسطة الملتقطان P_1 و P_0 يؤدي الى دفع قارورتين في نفس الوقت بواسطة الرافعتين P_1 و P_1 يؤدي الى مركز الملء اين تتم في نفس الوقت العمليات التالية:

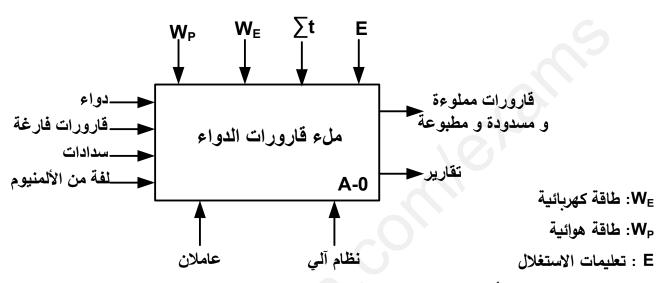
الأشغولة 2: الملء الأشغولة 3: التغليف

الأشغولة 4: وضع السدادات الأشغولة 5: الطبع

بعد ذلك يدور البساط الذي يديره المحرك M_2 للتحويل بين هذه المراكز الأربعة.

الأشغولة 6: التقديم (التحويل بين المراكز)

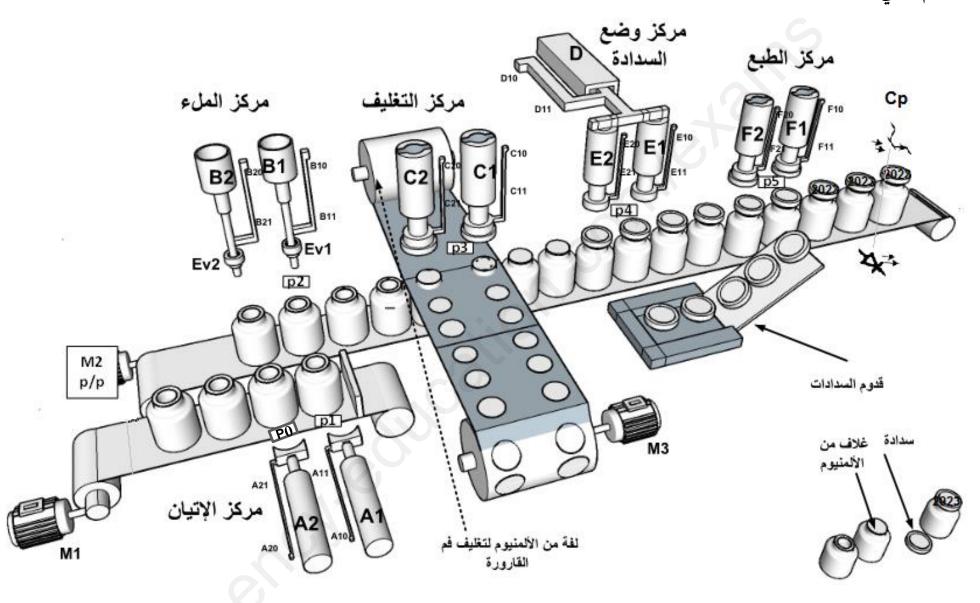
توضيحات:


- يتم تسخين المقاومتين Rch1 و Rch2 في نفس وقت خروج ذراعي الرافعتين C1 و C2.
- عند نهاية نزول ذراعي الرافعتين C1 وC2 تبدا عملية التلحيم بواسطة غلاف من الألمنيوم مع القارورة البلاستكية خلال مدة زمنية قدرها \$1=3s ثم تعودا إلى حالتهما الابتدائيتين.
 - بعد ذلك يدور المحرك M3 لمدة t3=1s لتغيير مكان الثقب على غلاف الألمنيوم.
- تتوقف عملية الإتيان بالقارورات بغية تنبيه العامل بواسطة جرس بعد ملء 120 قارورة وهذا للسماح لمراقبة مستوى خزان الدواء.
 - الإتيان بالسدادات واخلاء القارورات الجاهزة خارج الدراسة.

3. الأمن: حسب القوانين المعمول بها دوليا

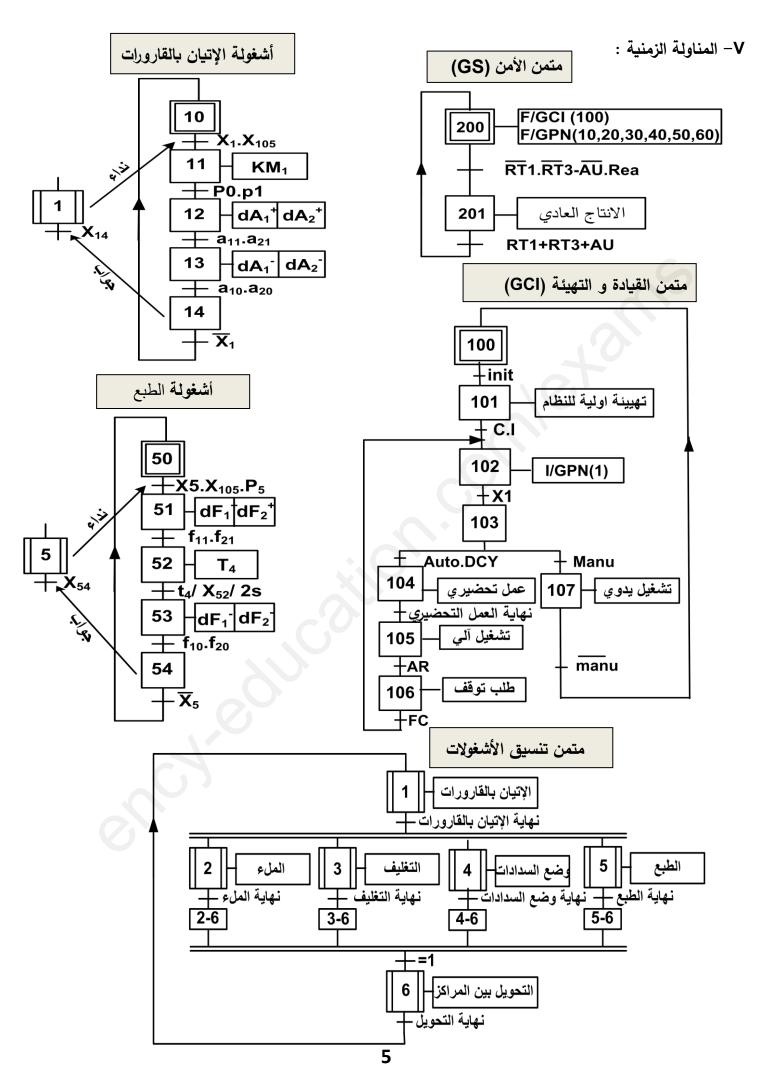
4. الاستغلال: عامل مختص لعمليات المراقبة و الصيانة الدورية و آخر دون اختصاص.

II - التحليل الوظيفي:


الوظيفة الشاملة: مخطط النشاط (A-0).

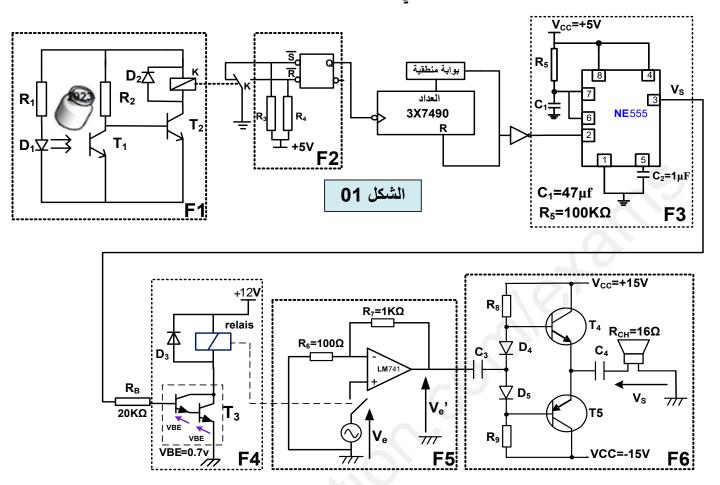
t= t1+t2+t3+t4: تأجيل

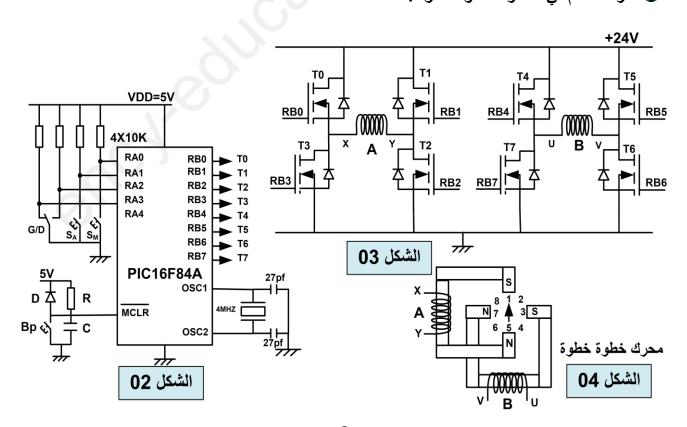
شبكة التغذية: 50HZ , 380V , 50HZ


اا ا هيكلة النظام الالي :

IV جدول الاختيارات التكنولوجية :

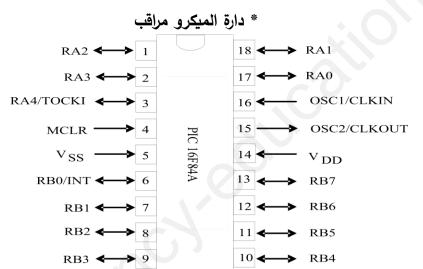
	<u>, </u>	- 			
الملتقطات	المنفذات المتصدرة	المنفذات	الأشغولات		
P1: ملتقط الكشف عن قارورة امام A1	KM1: ملامس كهرومغناطيسي	M1 : محرك لاتزامني ثلاثي			
P0: ملتقط الكشف عن قارورة امام A2	-dA1+,dA1: موزع ثنائي الإستقرار	الطور			
a10, a11 : ملتقط نهاية الشوط للرافعة A1	-dA2+ ,dA2: موزع ثنائي الإستقرار	A1: رافعة ثنائية المفعول	الاتيان		
a20,a21 : ملتقط نهاية الشوط للرافعة A2		A2: رافعة ثنائية المفعول	بالقارورات		
b10, b11: ملتقط نهاية الشوط للرافعة B1	-dB1+,dB1: موزع ثنائي الإستقرار	B1 : رافعة ثنائية المفعول			
b20, b21: ملتقط نهاية الشوط للرافعة B2	-dB2+,dB2: موزع ثنائي الإستقرار	B2: رافعة ثنائية المفعول			
t1=5s : زمن الملء	KEV1: ملامس كهرومغناطيسي	EV1: كهروصمام	الملء		
P2: ملتقط الكشف عن قارورة في مركز الملء	KEV2: ملامس كهرومغناطيسي	EV2: كهروصمام			
	T1: مؤجلة	1.0.			
c10, c11: ملتقط نهاية الشوط للرافعة	-dC1+,dC1: موزع ثنائي الإستقرار	C1: رافعة ثنائية المفعول			
c20, c21: ملتقط نهاية الشوط للرافعة C2	-dC2+,dC2: موزع ثنائي الإستقرار	C2: رافعة ثنائية المفعول			
P3: ملتقط الكشف عن قارورة في مركز	KM3: ملامس كهرومغناطيسي	M3: محرك لاتزامني ثلاثي			
التغليف	KR1: ملامس كهرومغناطيسي	الطور	التغليف		
t2=3s : زمن التلحيم	KR2: ملامس كهرومغناطيسي	RCh1: مقاومة التسخين			
t3=1s : زمن دوران المحرك M3	T2: مؤجلة T3 : مؤجلة	RCh2: مقاومة التسخين			
d10, d11: ملتقط نهاية الشوط للرافعة D	-dD+,dD: موزع ثنائي الإستقرار	D: رافعة ثنائية المفعول			
e10, e11: ملتقط نهاية الشوط للرافعة E1	-dE1+,dE1: موزع ثنائي الإستقرار	E1: رافعة ثنائية المفعول	وضع		
e20, e21: ملتقط نهاية الشوط للرافعة E2	-dE2+,dE2: موزع ثنائي الإستقرار	E2: رافعة ثنائية المفعول	السدادات		
P4 : ملتقط الكشف عن قارورة في مركز	dV: موزع أحادي الإستقرار	۷: ماصة هوائية أحادية			
التغليف		الإستقرار			
f10, f11: ملتقط نهاية الشوط للرافعة F1	-dF1+,dF1: موزع ثنائي الإستقرار	F1: رافعة ثنائية المفعول			
f20, f21: ملتقط نهاية الشوط للرافعة F2	-dF2+,dF2: موزع ثنائي الإستقرار	F2: رافعة ثنائية المفعول			
P5 : ملتقط الكشف عن قارورة في مركز	T4: مؤجلة		الطبع		
الطبع					
t4=2s:زمن الطبع					
m: ملتقط نهاية الشوط للكشف عن دوران	مضخم استطاعة بمقاحل MOSFET	M2: محرك خطوة خطوة	التقديم		
البساط					
	التوقيف. Init : زر التهيئة	Dcy: زر التشغيل. Ar: زر	لوحة		
	شغيل دورة/دورة أو آلي .	Auto/C/C: مبدلة اختيار نمط التن	التحكم		
	ية المحركات	RT1, RT3: مرحلات حرارية لحما			
		Réa: زر إعادة التسليح			
		کل المونعات ذات تحکو که و موا	م الأحداث		


ملاحظة: كل الموزعات ذات تحكم كهر وهوائي.


www.ency-education.com

VI- المناولة الزمنية:


🥏 دارة الكشف عن القارورات و عدها و التنبيه والصوتي.



🥏 دارة التحكم في المحرك خطوة خطوة .

🥏 دارة التحكم في مقاومة التسخين Rch1 .

SN	174L	مندمجة \$90ـ	ارة ال	* د
CKB R0(1)	1 2 3	U	13	CKA NC
NC VCC	4 5	SN74LS90	11 11 10	Q _A Q _D GND
R9(1) R9(2)	7		8	Q _B

TYPE	$I_{TAV}(A)$	$V_{TM}(V)$	$V_{DRM}(V)$
TYN806	3,8	1,6	600
TBW48-800	32	1,8	800
C122D	5	1,4	600
TN933-14	1210	1,35	1400

100mA	100V	1N4148
1A	50V	1N4001
1A	400V	1N4004
1A	1000V	1N4007
3A	400V	1N5404
3A	1000V	1N5408

Tension inverse

TYPE

Courant max

الجدول 01

الجدول02

العمل المطلوب

- س1: أكمل مخطط النشاط البياني AO على وثيقة الإجابة 01.
- س2: أرسم متمن أشغولة التغليف من وجهة نظر جزء التحكم.
- س3 : أكمل جدول التنشيط و التخميل و المخارج و كتابة معادلة المرحلة X53 على وثيقة الإجابة 01 .
- س4 : أكمل رسم دارة المعقب الكهربائي للأشغولة 5 و دارتي التحكم و الاستطاعة للرافعة F1 على وثيقة الإجابة 01.
 - دارة الكشف عن القارورات و عدها و التنبيه الصوتي (الشكل 01).
 - س 5: حدد دور كل من الطابقين F1 و F2.
 - س6: حدد اسم الطابق F3 الذي يتحكم في زمن التنبيه الصوتي ثم أحسب هذا الزمن.
- I_B التيار الذي يمر في وشيعة المرحل من أجل ب T_3 و حدد دوره ثم أحسب التيار الذي الذي يمر في وشيعة المرحل من أجل $eta_1=eta_2=150$
 - . V_e بدلالة جه اكتب عبارة V_e' بدلالة به V_e'
 - س9: حدد دور الطابق F6 و الثنائيتين D4 و D5.
 - η من اجل المردود η من المردود η من اجل المنطاعة المفيدة والاستطاعة المنطاعة المنطلعة المنطلعة
- س11: أكمل رسم دارة العداد لعد 120 قارورة باستعمال الدارة المندمجة 7490 مع تحديد نوع البوابة المستعملة على وثيقة الإجابة 02.

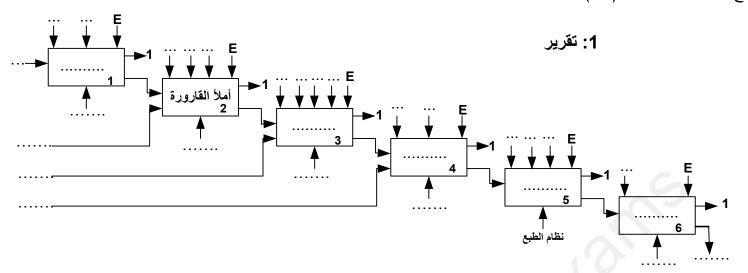
دارة التحكم في مقاومة التسخين (الشكل 05).

- $C_1=10\mu f$ من أجل R_1 من أجل و أحسب قيمة المخرج الطوابق R_1 من أجل جارة دور الطوابق و المخرج المخرج
 - س13: أكمل جدول تشغيل الطابق F8 على وثيقة الإجابة 02.
 - \mathbf{Q}_{n} و \mathbf{S} و \mathbf{R} و \mathbf{R} و \mathbf{R} و \mathbf{Q}_{n} و \mathbf{Q}_{n} و \mathbf{Q}_{n}
 - $t_r=5mS$ علما أن زمن القدح $lpha_r$ علما أن زمن القدح
- $\overline{I_{Th}}$ و التيار المتوسط المباشر المار في مقاومة التسخين $\overline{I_S}$ و التيار المتوسط المباشر المار في المقداح
- س 17: على اساس أي مقادير يتم اختيار العنصرين D_1 و Th_1 ، أحسب هذه المقادير ثم قم باختيار العنصرين المناسبين حسب وثائق الصانع في الجدولين D_1 و D_1 الصفحة D_1 .
 - س18: أكمل رسم الإشارات المناسبة لتشغيل الطابق F9 على وثيقة الإجابة 02.

دارة التغذية:

- تغذى الملامسات المستعملة بمحول كهربائي كتب على لوح معلوماته ما يلي :96VA, 220V/24V, 50Hz.أجريت عليه تجارب فكانت النتائج كالتالي :
 - $P_{10} = 2W$, $U_{10} = 220V$: التجربة في الفراغ
 - $P_{1CC}=6W$, $I_{2CC}=I_{2N}$: سمي الدارة القصيرة من أجل تيار ثانوي اسمي ullet
 - س19: أحسب شدة التيار الاسمى في الثانوي ثم استنتج قيمة المقاومة المحولة للثانويRS.

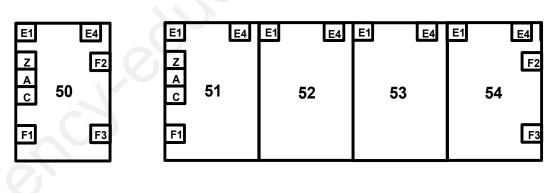
س20: أحسب قيمة الهبوط في التوتر والمردود إذا كان المحول يصب تيارا اسميا في حمولة حثية بمعامل استطاعة قدره $X_{
m S}=20,8m\Omega$ و معاوقة $X_{
m S}=20,8m\Omega$

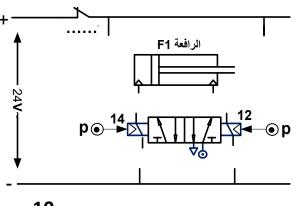

دارة التحكم في المحرك خطوة خطوة .

س 21: حدد نوع القطبية ونمط التبديل للمحرك خطوة خطوة (الشكل 04) ثم احسب عدد الوضعيات (الخطوات) ومقدار الخطوة الزاوية.

س22: أكمل محتوى السجلين TRISA و TRISB على وثيقة الإجابة 03 .

س 23: أكمل جدول تشغيل المحرك خطوة خطوة على وثيقة الإجابة 03.

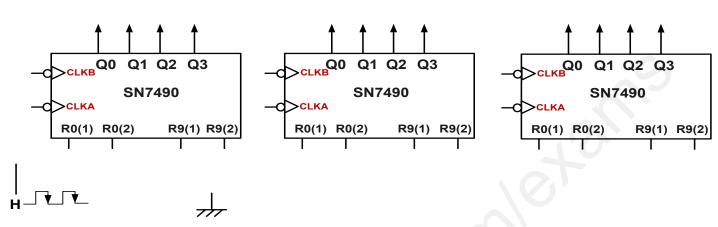

وثيقة الإجابة 01 ج1: مخطط النشاط: (A0)



ج3: جدول التنشيط و التخميل و الأفعال:

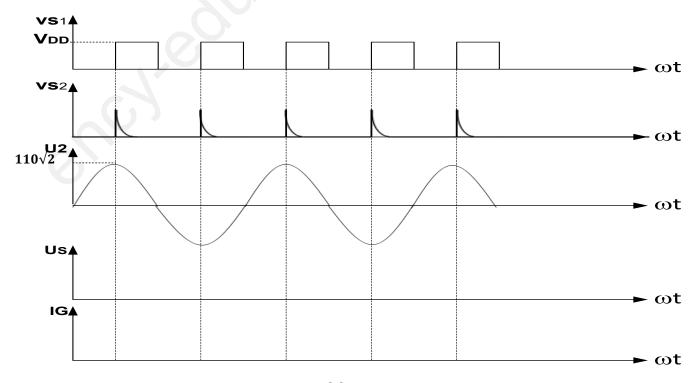
الأفعال	التخميل	التنشيط	المرحلة
			X50
			X51
			X52
		A +	X53
			X54
	7/10		X102

ج 4: دارة المعقب الكهربائي للأشغولة 5 و دارة التحكم و الاستطاعة للرافعة F1:



10

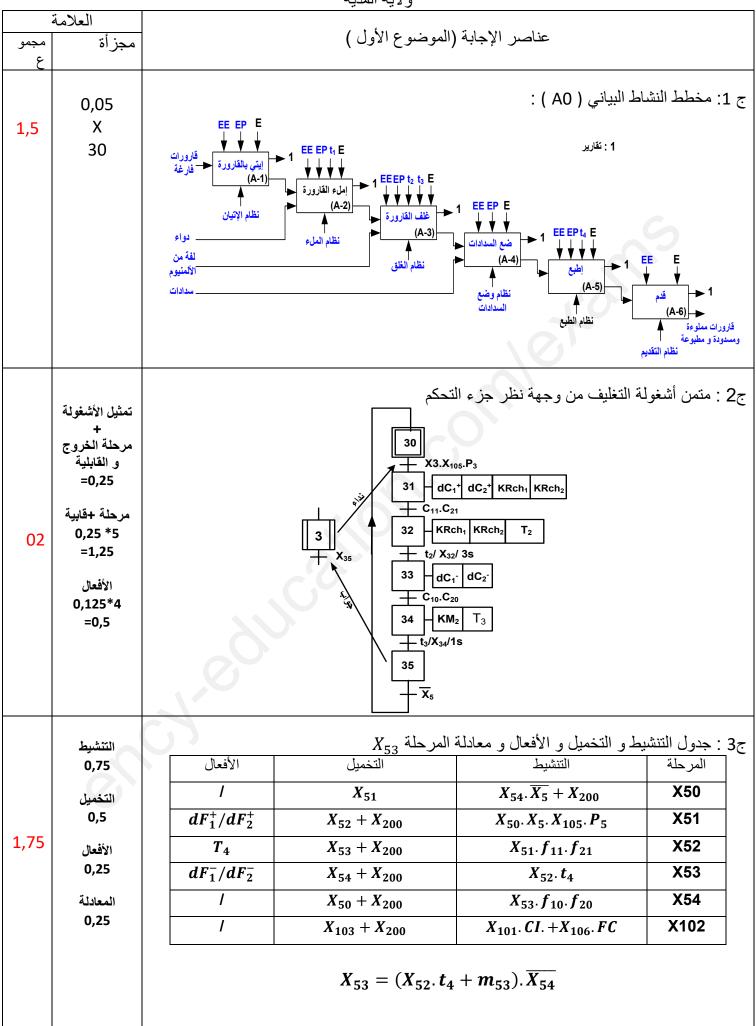
وثيقة الإجابة 02 تملأ وتسلم مع ورقة الاجابة الاسم واللقا الاسم واللقا الاسم واللقا المندمجة 7490 مع تحديد نوع البوابة .

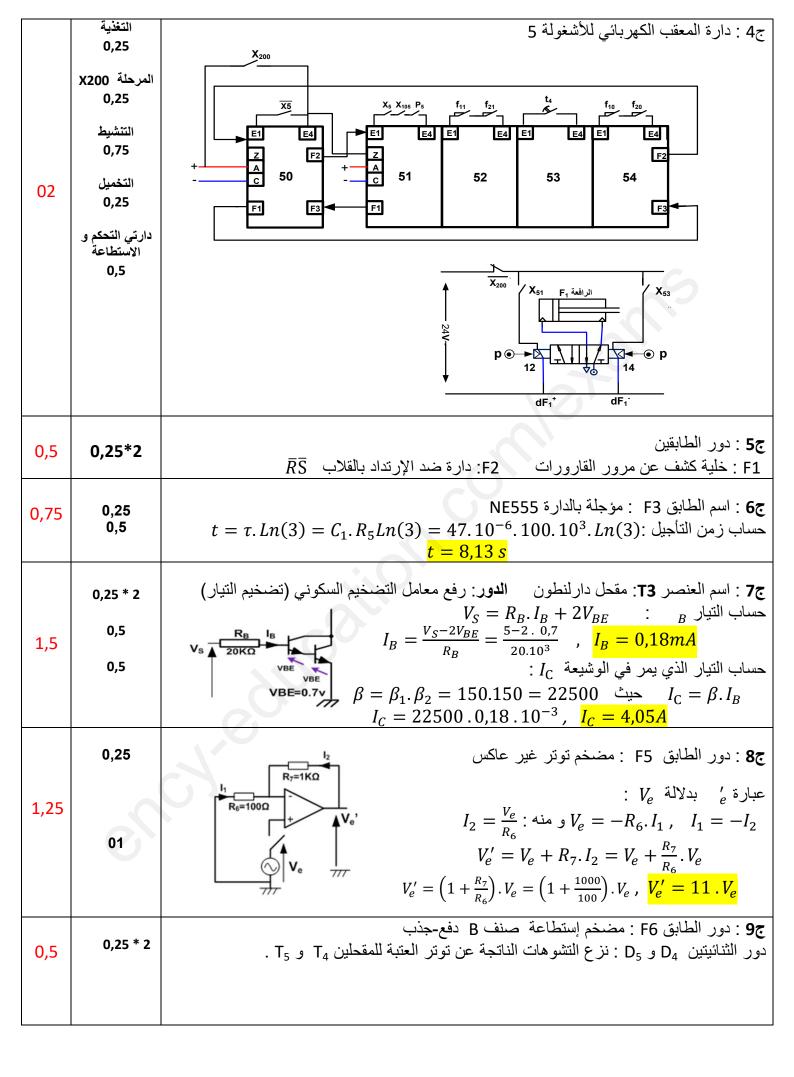


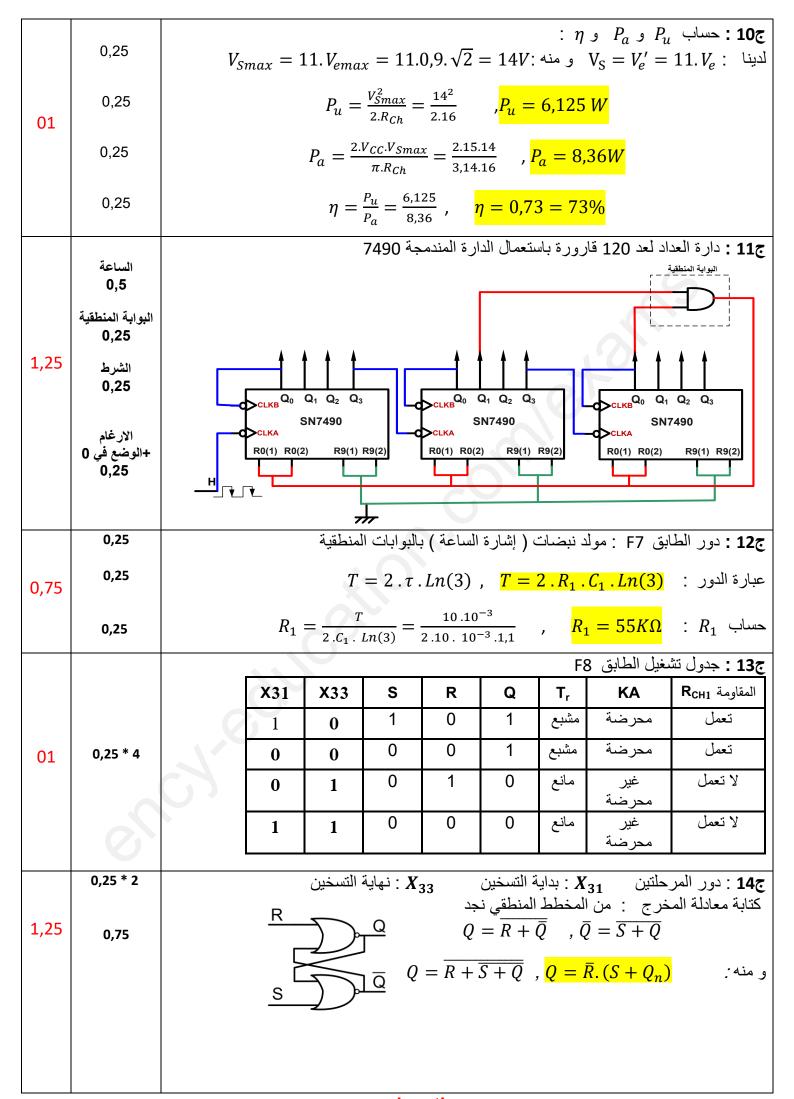
ج13: تشغيل الطابق F8:

X31	X33	S	R	Q	T _r	KA	المقاومة R _{CH}
1	0						
0	0						
0	1						
1	1						

ج81: رسم الإشارات المناسبة لتشغيل الطابق


وثيقة الإجابة 03 TRISA و TRISB: ح22: محتوى السجلين TRISA و TRISB:


TRISA				
TRISB				


ج23 : جدول تشغيل المحرك خطوة خطوة :

محتوى السجل PORTA	المقاحل المشبعة	قيمة و جهة التيار	قيمة و جهة التيار	وضعية الدوار	اتجاه الدوران
RB7RB0		الطور A	الطور B		
00000101	T2-T0	$X \rightarrow Y$	0	10	
01010101	T6-T4-T2-T0	$X \rightarrow Y$	$V \rightarrow V$	2	
			69		
			•		

الإجابة النموذجية. مادة : التكنولوجيا (هندسة كهربائية) الشعبة : تقني رياضي بكالوريا تجريبي 2023 ولاية المدية

	T	
0,5	0,25 * 2	$t_r=5ms$ من أجل $lpha_r=5ms$ من أجل $lpha_r=\omega$. $t_r=100$. π .
		$\alpha_r = \frac{\pi}{2} rad = 90^{\circ}$
		تا : حساب التيار $\overline{I_S}$ و التيار $\overline{I_{Th}}$:
	0,5+0,25	$\overline{I_S} = \frac{\overline{U_S}}{R_{Ch}}$, $\overline{U_S} = \frac{U_{2\text{max}}}{\pi} \cdot (1 + \cos \alpha_r) = \frac{110 \cdot \sqrt{2}}{3.14} \cdot (1 + \cos 90) = 49,54V$
01		$\overline{I_S}=rac{49,54}{75}$, $\overline{I_S}=0,66A$
	0,25	$\overline{I_{\rm Th}} = \frac{\overline{I_S}}{2} = \frac{0.66}{2} \qquad , \overline{I_{Th}} = 0.33A$
	0.07 * 0	ج T 1: يتم إختيار العنصرين D_1 و Th_1 على أساس :
	0,25 * 2	التوتر العكسي الأعظمي V_{AKI} للمقداح Th_1 للمقداح بات المنافقة $\overline{V_{AKI}}$ المنافقة ا
		المار في الثنائية D1 والتيار المباشر الأعظمي IDmax المار في الثنائية D1 والتيار المباشر \overline{ITh} المار في المقداح من أجل زاوية قدح معدومة $(\alpha_r = 0)$.
	0.25	$(u_r = 0)$. Where $u_r = 0$ is a constant $u_r = 0$.
1,5	0,25	$\widehat{V_{AKI}} = \widehat{U_2} = 110 \sqrt{2}$, $\widehat{V_{AKI}} = 155,56V$
	0,25	$\overline{I_{Th}} = IDmax = \frac{\overline{I_S}}{2} = \frac{\overline{U_S}}{2 \cdot R_{Ch}} = \frac{110 \cdot \sqrt{2} \cdot (1 + \cos 0)}{2 \cdot \pi \cdot 75} , \overline{I_{Th}} = \overline{I_D} = 0,66A$
	0,125 * 2	2 2. R_{Ch} 2. π .75 π π 110 π 2 π 2. π .75 π 110 π 1
	0,123 2	ي المقداح: TYN806
		1 N4004 : ♦ الثنائية
		ج18: رسم الاشارات المناسبة لتشغيل الطابق F9
		VS1A VDD
		vs₂ _♠
		V DD → ωt
0,5	0,25 * 2	U2 _A
		► ωt
		Usa
		lGA → ωt
		► wt
		ج19: حساب شدة التيار الاسمي في الثانوي $I_{ m 2N}$:
0.5	0,25	$S_N = U_{2N} \cdot I_{2N} \implies I_{2N} = \frac{S_N}{U_{2N}} = \frac{96}{24}$, $I_{2N} = 4A$
0,5		ناب جساب : R_S
	0,25	$R_{\rm S} = \frac{P_{1CC}}{I_{2CC}^2} = \frac{6}{4^2}$, $R_{\rm S} = 0.375\Omega$
		ΔU_2 عساب قيمة الهبوط في التوتر ΔU_2
01	0,25	$\Delta U_2 = I_{2N}(R_S \cos \varphi_2 + X_S \sin \varphi_2)$
01		$\Delta U_2 = 4(0.375.0.8 + 0.0208.0.6)$, $\Delta U_2 = 0.65V$

	0,25		$I_{2N} \cdot \cos \varphi_2 =$				حساب الم
	0,25	$P_1 = P_2$	$+ P_{10} + P_{10C} = 76.8$			3W	و منه :
	0,25		$\eta = \frac{300}{8408} =$: 0,905 = 90,5	<mark>%</mark>		
	0,25 0,25		$K_2 = 2$	$K_1 = 2$ ية $K_1 = 2$ (نصف الخطوة)	طبية: ثنائي القطب بديل: غير متناظر	_	: 21₹
1,25	0,5	P=1 و n	n = 2 : عيث 1	,	ت: m.P	د الخطوا	حساب عد
				: 2.2.2.1 = 8	وية : π	بطوة الزا	حساب الذ
	0,25	•	$\alpha_{\rm P} = \frac{360}{N_{P/t}} = \frac{360}{8}$	$\alpha_P = 45$	$=\frac{1}{4}rad$		
0,5	0,25 * 2		1	:TRISE	جلين TRISA و 8 1 1	حتو <i>ی</i> السـ TRIS	
		0 0 0	0 0	0 0	0	TRISB	
				فطوة :	ل المحرك خطوة م	دول تشغيا	ج33 : ج
	اتجاه الدوران + وضعية الدوار 0,25	محتوى السجل PORTA RB7RB0	المقاحل المشبعة	قيمة و جهة التيار الطور A	قيمة و جهة التيار الطور B	وضعية الدوار	اتجاه الدوران
		00000101	T2-T0	$X \rightarrow Y$	0	1	اتجاه
		01010101	T6-T4-T2-T0	$X \rightarrow Y$	$V \rightarrow V$	2	عقارب الساعة
1,25		01010000	T6-T4	0	$V \rightarrow V$	3	
	0,25 * 4	01011010	T6-T4-T3-T1	Y → X	$U \rightarrow V$	4	
	0,23	00001010	T3-T1	$Y \rightarrow X$	0	5	
		10101010	T7-T5-T3-T1	$Y \rightarrow X$	$V \rightarrow U$	6	
		10100000	T7-T5	0	V → U	7	
		10100101	T7-T5-T2-T0	$X \rightarrow Y$	$V \rightarrow U$	8	
0.5	0,5		عالة 1 (مقحلين ممرر I _I . (R _{DS} + R _A) ا			ساب التيار	ج242 : د
0,5	0,3		I_L	$_{0} = 2,5 A$			

المجموع: 25

ملاحظة إسلم التنقيط على 25 و لتحويل النقطة من 25 الى 20 نضرب التقطة التي يتحصل عليها التلميذ من 25 في 0.8. مثال: اذا تحصل التلميذ على 25/ 15 نضربها في 0.8 فنتحصل على العلامة النهائية: 12/20