الجمهورية الجزائرية الديمقراطية الشعبية

وزارة الدفاع الوطني الناحية الصنكرية الأولى الشهيد بوقارة أحمد مدرسة أشبال الأمة بالبليدة

السنة الدراسية: 2020/2019 المستوى: السنة الثالثة ثانوي الشعبة: رياضيات المدة: 04 ساعات و 30 دقيقة

امتحان بكالوريا تجريبي في مادة الرياضيات دورة أوت 2020

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول:(04 نقاط) أنكر صحة أو خطأ كل اقتراح مما يلي مع التيرير . الاقتراح الأول: من أجل كل عدد طبيعي n ، 3 يقسم العدد الطبيعي 1 – 2ⁿ 2 . الاقتراح الثاني: إذا كان العدد الصحيح x حلا للمعادلة : [6]6 = x = 0 [3] . الاقتراح الثالث: مجموعة ثنائيات الأعداد الصحيحة (x; y) حلول المعادلة 3 = 2 - 5 هي مجموعة الثنائيات (x + 24 b) مع 2 & . الثنائيات (x + 24 b) مع 2 & . الثنائيات (x + 24 b) مع 2 & . الثنائيات (x + 24 b) مع 2 & . الاقتراح الرابع: توجد ثنائية أعداد طبيعية وحيدة (a; b) تحقق: d > a و 1 = (a; b) − PGCD (a; b) و 1 = (a; b) − PGCD (a; b) الاقتراح الخامس: M و N عددان طبيعيان يكتبان في النظام المشري abc و aod على الترتيب. إذا كان M قابلا للقسمة على 27 فإن العدد الصحيح N – M يقبل القسمة على 27 .

التعرين الثاني : (04 نقاط) يحتوي صندوق على7 كرات بيضاء و 3 كرات سوداء لا نفرق بينها عند اللمس. نسحب عشوائيا كرة واحدة من هذا الصندوق ونسجل لونها ، ثم نعيدها إلى الصندوق ونسحب منه كرة ونسجل لونها وننهي التجرية . 1) أحسب احتمالات الحوادث التالية : A : "الحصول على كرتين بيضاوين" . B : "الحصول على كرتين من نفس اللون". 2) نعرف لعبة حظ كما يلي: تمنح لكل كرة بيضاء العلامة α حيث R ا موداء العلامة (α-) . ليكن المتغير العشوائي X الذي يرفق بكل سحب كرتين مجموع النقاط المحصل عليها .

$$\begin{cases} u_n = 2 \\ u_{n+1} = \sqrt{3u_n + 4} & \text{in } N \text{ and } u_n \text{ } \\ u_{n+1} = \sqrt{3u_n + 4} & \text{in } N \text{ } \\ u_{n+1} = \sqrt{3u_n + 4} & \text{in } 2 \leq u_n \leq 4: n \text{ } \\ 1 & \text{in } 2 \leq u_n \leq 4: n \text{ } \\ 1 & \text{in } 2 \leq u_n \leq 4: n \text{ } \\ 1 & \text{in } 2 \leq u_n \leq 1: n \text{ } \\ 1 & \text{in } 2 \leq u_n \leq 1: n \text{ } \\ 1 & \text{in } 2 \leq u_n \leq 1: n \text{ } \\ 2 & \text{in } 2 \leq u_n \leq 1: n \text{ } \\ 2 & \text{in } 2 \leq u_n \leq 1: n \text{ } \\ 2 & \text{in } 2 \leq u_n \leq 1: n \text{ } \\ 1 & \text{in } 2 \leq u_n \leq 1: n \text{ } \\ 1 & \text{in } 2 \leq u_n \leq 1: n \text{ } \\ 1 & \text{in } 1 = \frac{3(4-u_n)}{4+\sqrt{3u_n + 4}} \text{ } \\ 1 & \text{in } 1 = \frac{3(4-u_n)}{4+\sqrt{3u_n + 4}} \text{ } \\ 1 & \text{in } 1 = \frac{3(4-u_n)}{4+\sqrt{3u_n + 4}} \text{ } \\ 1 & \text{in } 1 = \frac{1}{2}(4-u_n) \text{ } \\ 1 &$$

$$\begin{split} & \text{Hundrey for the set of th$$

ملحة 2 س 6

3as.ency-education.com

أو عن طبقة التحول (معددا عناسن السور). ما) علم عمرية القطة / ذات اللاحقة (= , : بالتعويل //...)

$$\begin{split} & \text{Homes}(x, y) = \frac{1}{2} \left\{ x, y \right\} + \frac{1}{2}$$

ملحا (بن)

3as.ency-education.com

الموضوع الثاني

التمرين الأول: (04 نقاط)

$$q$$
 عدد طبيعي غير معدوم ، n عدد طبيعي غير معدوم ويختلف عن 1 .
 $b = p(n-1) = a = pn$ و $(pn-1) = a = pn$.
 $PGCD(a;b) = a - b$.
(1) بين أن $a - b = (a;b) = a - b$.
(2) بين أنه إذا كان $a = d$ عددان طبيعيان غير معدومين حيث : $d - b = (a;b) = PGCD(a;b)$ فإنه يوجد عددان طبيعيان $n = a = p = e$.
(3) م و q عددان طبيعيان غير معدومين .
(4) $x = 24x(3y+2)$ $b = 15x(8y+5)$, $a = 40x(3y+2)$.
(5) $PGCD(a;b)$.
(6) $PGCD(a;b;c)$.

التمرين الثاني : (04 نقاط)
.
$$u_n = 2u_{n-1} + 3u_{n-2}$$
 , $u_1 = 2$, $u_0 = 1$ كما يلي : \mathbb{N} كما يلي : $u_n = 2$, $u_1 = 2$, $u_1 = 2$, $u_0 = 1$.
(u_n) متتالية معرفة على \mathbb{N} كما يلي : $\mathbb{N}_n = \alpha u_n + \beta u_{n-1}$, متتالية معرفة على \mathbb{N} بما يلي : $u_n = \alpha u_n + \beta u_{n-1}$ معدومين .
معدومين.

أ) أحسب
$$u_2$$
 و u_1 .
 u_1 ب u_2 ب u_2 ب u_1 ب u_2 ب u_1 ب) أحسب v_1 ، v_2 ، v_1 ب v_2 ، β ، β - β - $\beta^2 - 3\alpha^2 - 3\alpha^2 - 2\alpha\beta - \beta^2 = 0$.
 $g = \alpha$ بين أنه إذا كانت v_1 و v_2 و v_3 ثلاثة حدود منتابعة من منتالية هندسية فإنّ : $0 = {}^2 - 2\alpha\beta - \beta^2 - 3\alpha^2 - 3\alpha^$

التمرين الثالث : (04 نقاط)

1) نعتبر في مجموعة الأعداد المركبة
$$\Im$$
 المعادلة : $0 = isi - 2ii - 2ii + 4i) + 2ii + 2ii$

29

ا- نعتبر الدالة العددية g للمتغير الحقيقي x والمعرفة على]∞+;1-[كما يلي:
$$g(x) = (x+1)^2 - 1 + \ln(x+1)$$
 $g(x) = (x+1)^2 - 1 + \ln(x+1)$
1) ادرس تغيرات g .
2) احصب (0) ثم استنتج إشارة (x) g حصب قيم x من]∞+;1-[.
 $f(x) = x - \frac{\ln(x+1)}{x+1}$
ا=1;+∞[.
 $f(x) = x - \frac{\ln(x+1)}{x+1} = 1$
ا=1;+∞[.
 $f(x) = x - \frac{\ln(x+1)}{x+1} = 1$
الدالة العددية للمتغير الحقيقي x والمعرفة على المجال]∞+;1-[.
 $f(x) = x - \frac{\ln(x+1)}{x+1} = 1$
الدالة العددية للمتغير الحقيقي x والمعرفة على المجال]∞+;1-[.
 $f(x) = x - \frac{\ln(x+1)}{x+1} = 1$
الدالة العددية للمتغير الحقيقي x والمعرفة على المجال]∞+;1-[.
 $g(x) = x - \frac{\ln(x+1)}{x+1} = 1$
الدائة العددية للمتغير الحقيقي x والمعرفة على المجال]∞+;1-[.
 $g(x) = x - \frac{\ln(x+1)}{x+1} = 1$
 $g(x) = x - \frac{\ln(x+1)}{x+1} = 1$
 $f(x) = x - \frac{\ln(x+1)}{x+1} = 1$
 $g(x) = x - \frac{\ln(x+1)}{x+1} = 1$
 $f(x) = x - \frac{\ln(x+1)}{x+1} = 1$

منحا 5 من 6 3as.ency-education.com

$$\begin{split} &\lim_{x \to +\infty} f\left(x\right) \cdot \lim_{t \to -\infty} f\left(x\right) \cdot \int_{t \to +\infty} f\left(x\right) \cdot f\left(x\right) + \int_{t \to +\infty} f\left(x\right$$

انتهى الموضوع الثاني

الجمهورية الجزائرية الديمقراطية الشعبية

وزارة الدفاع الوطني الناحية العسكرية الأولى الشهيد بوقارة أحمد مدرسة أشبال الأمة بالبليدة

السنة الدراسية: 2020/2019 المستوى: السنة الثالثة ثانوي الشعبة: رياضيات

> امتحان البكالوريا التجريبي دورة أوت 2020

> > اختبار مادة الرياضيات

تصحيح الموضوع الأول

محاور	-10 01201 20100	العلامة	
لموضوع	عناصر الإجابة		كاملة
التمرين	الاقتراح الأول: صحيح .	0.25 ن	04 ن
الأول	لأن [3] 2 ² = 1[3 ومنه [3] 2 ² = 1		
	الاقتراح الثاني: خطأ .	0.25 ن	
	مثال مضاد: [6]0 = 2 + 2 ² لكن [3]0 = 2 خاطئة .		
	الاقتراح الثالث: خطأ .		
	x = 4[5] معناه [5] اومنه [5] x = 3 و منه [5] و منه x = 4 و منه [5] x = 3		
	. $k \in \mathbb{Z}$ مع $y = 12k + 9$ مع $x = 5k + 4$ أي $k \in \mathbb{Z}$		
	الاقتراح الرابع: صحيح .	0.25 ن	
	$\begin{cases} a = da' \\ b = db' \\ PGCD(a';b') = 1 \\ PPCM(a;b) = da'b' \end{cases}$		
	$da'b'-d=1$ نجد $PPCM(a;b)-PGCD(a;b)=1$ نجد $\begin{cases} a=1\\ b=2 \end{cases}$ $\begin{cases} d=1\\ a'=1\\ b'=2 \end{cases}$ $\begin{cases} a=1\\ a'b'=2\\ b'=2 \end{cases}$ $\begin{cases} a=1\\ a'b'=2\\ PGCD(a';b')=1 \end{cases}$	0.5 ن	
	الاقتراح الخامس: صحيح . M = 100a + 10b + c N = 100b + 10c + a $0 < a \le 9$; $0 \le b \le 9$; $0 \le c \le 9$	0.25 ن	
	$(0 < a \le 9, 0 < b \le 9, 0 \le c \le 9)$ M = 0[27] . $M = 0[27]$ معناء $M = 0[27]$		

6 -- 1 ----3as.ency-education.com

منحة 2 من 6 3as.ency-education.com

		لدينا $4 \ge u_n \le 4$ تكافئ $4 \ge \sqrt{3u_n + 4} \le 4$ لأن الدالة f حيث
		. [2;4] متزايدة على المجال $f(x) = \sqrt{3x+4}$
	0.75 ن	. $2 \leq u_n \leq 4$ وبالتالي $2 \leq u_{n+1} \leq 4$ أي $\sqrt{10} \leq u_{n+1} \leq 4$ وبالتالي
	0.75 ن	$u_{n+1}^2 - u_n^2 = -u_n^2 + 3u_n + 4 = -(u_n + 1)(u_n - 4) : n \in \mathbb{N}$ \downarrow
		ج) من اجل $u_{n+1}^2 \ge u_n^2 = u_{n+1}^2 - u_n^2 \ge 0$ لدينا $u_n \in [2;4]$ ومنه (ج
	0.5 ن	. متزايدة (u_n) متزايدة $u_{n+1} \ge u_n$
	0.5 ن	. $4 - u_{n+1} = 4 + \sqrt{3u_n + 4} = \frac{3(4 - u_n)}{4 + \sqrt{3u_n + 4}}$: $n \in \mathbb{N}$ (1) (2)
		بب) للدينا $2 \ge \sqrt{3u_n + 4} \ge 6$ وسنه $\sqrt{3u_n + 4} \ge 2$ أي
		$\frac{3(4-u_n)}{4+\sqrt{3u_n+4}} \le \frac{1}{2}(4-u_n) \le \frac{1}{4+\sqrt{3u_n+4}} \le \frac{1}{6}$
	0.5 ن	. $4 - u_{n+1} \leq \frac{1}{2} (4 - u_n)$ is
		: استنتاج لکل $n \in \mathbb{N}$ ، $n \in \mathbb{N}$ بالتراجع (ج
		$\left(rac{1}{2} ight)^{n-1}=2$ و $4-u_0=2$ الدينا $n=0$ الدينا
		$0 \le 4 - u_0 \le \left(\frac{1}{2}\right)^{0-1}$ إذن
		$0 \le 4 - u_{n+1} \le \left(\frac{1}{2}\right)^n$ نفرض أن $u_n \le 4 - u_n \le \left(\frac{1}{2}\right)^{n-1}$ نفرض أن
		$0 \le \frac{1}{2} (4 - u_n) \le \left(\frac{1}{2}\right)^n$ و $0 \le 4 - u_{n+1} = \frac{1}{2} (4 - u_n)$ لاينا
	0.75 ن	$0 \le 4 - u_n \le \left(\frac{1}{2}\right)^{n-1}$ ومنه $0 \le 4 - u_{n+1} \le \left(\frac{1}{2}\right)^n$ نستنتج أن $0 \le 4 - u_n \le 1$
		$\left[0 \le 4 - u_n \le \left(\frac{1}{2}\right)^{n-1}\right]$
		$\begin{cases} 0 \le 4 - u_n \le \left(\frac{1}{2}\right)^{n-1} \\ \vdots \\ \lim_{n \to +\infty} \left(\frac{1}{2}\right)^{n-1} = 0 \end{cases}$
	0.25 ن	$\lim_{n \to +\infty} u_n = 4 \lim_{n \to +\infty} \left(4 - u_n \right) = 0 \text{in the set of } u_n = 0$
04 ن		
200		

منحة 4 من 6 3as.ency-education.com

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x \neq 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = x = 0 = x = 0 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = x = 0 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = x = 0 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = x = 0 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

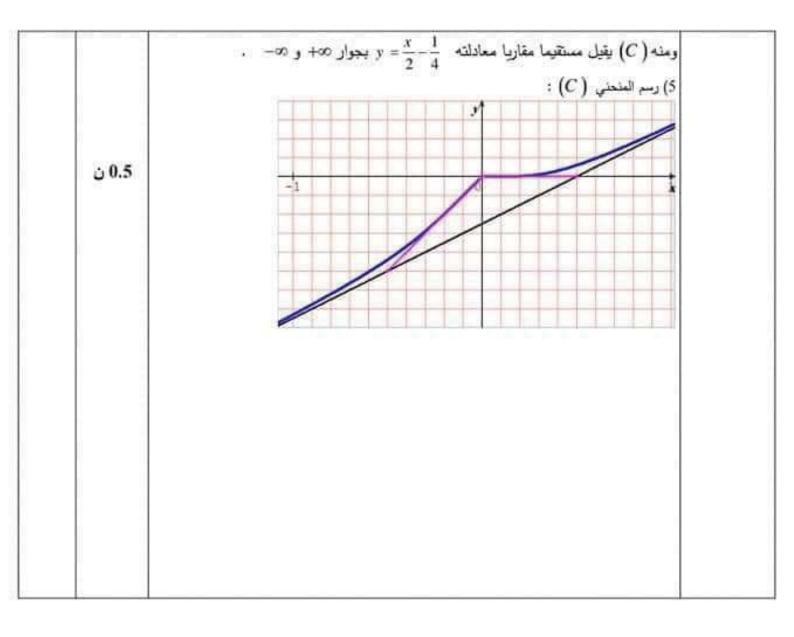
$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$


$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

$$| \int_{||x|=x}^{||x|=x} (x \neq 0) = x = 1 = 0$$

الجمهورية الجزائرية الديمقراطية الشعبية

وزارة الدفاع الوطني الناحية العسكرية الأولى الشهييد بوقارة أحمد مدرسة أشبال الأمة بالبليدة

السنة الدراسية: 2020/2019 المستوى: السنة الثالثة ثانوي الشعبة: رياضيات

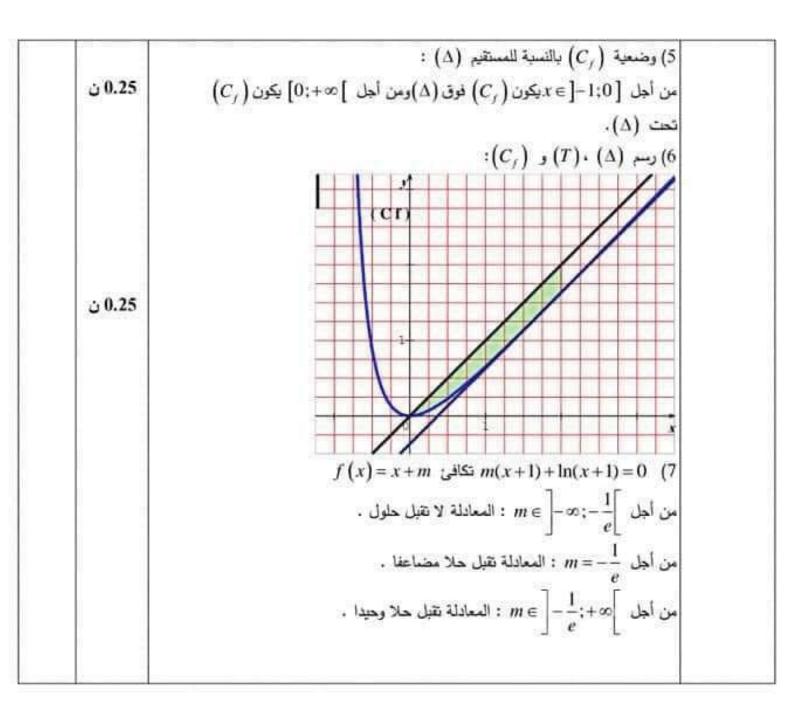
> امتحان البكالوريا التجريبي دورة أوت 2020

> > اختبار مادة الرياضيات

تصحيح الموضوع الثاني

العلامة		- 12 Page 1 - 12 20 Page 1	محاور	
كاملة	مجزأة	عناصر الإجابة	لموضوع	
04 ز		p عدد طبيعي غير معدوم ، nعدد طبيعي غير معدوم ويختلف عن 1 .	التمرين	
		. $b = p(n-1)$ و $a = pn$ و $a = a$ و $a = a$	الأول التعرين الثاني	
		$pn = p(n-1) \times 1 + p$		
		$p(n-1) = p \times (n-1) + 0$ (1)		
	01 ن	PGCD(a;b) = p = a - b ومنه PGCD(a;b)		
		معناه يوجد عددان طبيعيان n و p يحققان PGCD $(a;b) = a - b$ (2		
	01 ن	. $b = p(n-1)$ ج $a = pn$ أي $b = p \times (n-1)$ ج $a = (a-b) \times n$		
		3) x و y عددان طبيعيان غير معدومين .		
		. $c = 24x(5y+3)$ و $b = 15x(8y+5)$ ، $a = 40x(3y+2)$ نضع $b = 15x(8y+5)$		
	0.75 ن	$PGCD(a;b) = 5x \times PGCD(24y+16;24y+15) = 5x \times 1 = 5x$		
	0.75 ن	$PGCD(b;c) = 3x \times PGCD(40y + 25;40y + 24) = 3x \times 1 = 3x$		
	0.5 ن	$PGCD(a;b;c) = PGCD(5x;c) = x \times PGCD(5;120y+72) = x$		
04		. $u_n = 2u_{n-1} + 3u_{n-2}$ و $u_1 = 2$ ، $u_0 = 1$ كما يلي: ا		
		. $v_n = \alpha u_n + \beta u_{n-1}$ بما يلي: \mathbb{N}^* بما يلي: (v_n) متتالية معرفة على $(1$		
	0.5 ن	$u_3 = 2u_2 + 3u_1 = 20 \exists u_2 = 2u_1 + 3u_0 = 7 $		
	0.75 ن	$y v_2 = \alpha u_2 + \beta u_1 = 7\alpha + 2\beta v_1 = \alpha u_1 + \beta u_0 = 2\alpha + \beta (\downarrow)$		
	U when	$\cdot v_3 = \alpha u_3 + \beta u_2 = 20\alpha + 7\beta$		
		ج) v_1 و v_2 و v_3 ثلاثة حدود منتابعة من منتالية هندسية معناه $v_3 = v_1 \times v_2 = v_2$ أي		
		: يمنه $9\alpha^2 - 6\alpha\beta - 3\beta^2 = 0$ ومنه $(7\alpha + 2\beta)^2 = (2\alpha + \beta)(20\alpha + 7\beta)$		
	0.5 ن	$\cdot 3\alpha^2 - 2\alpha\beta - \beta^2 = 0$		

منحة 2 من 5 3as.ency-education.com


السبطين عليها .
(ن السبطين عليها .
(ن السبطين المنتغر : :

$$\frac{x_i}{P(X=x_i)}$$
 (i) $\frac{1}{28}$ (i) $\frac{2}{28}$ (i) $\frac{3}{28}$)
 $\frac{1}{28}$ (i) $\frac{1}{28}$ (i) $\frac{2}{3}$ (i) $\frac{3}{28}$)
 $\frac{1}{28}$ (i) $\frac{1}{28}$ (i) $\frac{2}{3}$ (i) $\frac{3}{28}$)
 $\frac{1}{28}$ (i) $\frac{1}{28}$ (i)

منحاد ہے 5 3as.ency-education.com

: دراسة تغيرات g : + ∞ ، $\lim_{x \to 0} g(x) = -\infty$				
$+\infty$, $\lim_{x \to \infty} g(x) = -\infty$				
	$\lim_{x \to +\infty} g(x) = +\infty + \lim_{x \to -1} g(x) = -\infty$			
$f(x) = 2(x+1) + \frac{1}{x+1} > 0$		0.25 ن		
ومنه الدالة متزايدة تماما على الم	بل]∞+;+∞[0.25 ن		
NE .				
-1 +∞		10000		
+		0.25 ن		
-s-	g(x)			
g(0) = 0 (2)		0.25 ن		
	1 Doi: 101	0.25 ن		
$f(x) = x - \frac{\ln(x+1)}{x+1} - \Pi$,			
		0.5 ن		
11 58 201 100		0.25		
$(x+1)^2 = \frac{1}{(x+1)^2}$ (2)	(x) = 1	C on a c		
اتجاء تغير الدالة f				
الدالة f متناقصة على المجال	[0;1−[ومتزايدة على المجال] ∞+;0].	0.25 ن		
جدول التغيرات:				
0 +∞	x -1			
0 +	f'(x)	0.25 ن		
+ 00	$f(x) + \infty$			
0				
10Uien	. 8 N			
ومنه المنحني (C) يقبل مماسا	. $y = x - \frac{1}{e}$ معامل توجيهه معادلة له هي: (T)	0.25 ن		
$\lim_{x \to +\infty} \left(-\frac{\ln(x+1)}{x+1} \right) = 0 (4)$	$\lim_{x\to\infty} f(x) - x =$			
N		0.25 ن		
	$g(0) = 0 (2)$ $g(x) = y(x)$ $f(x) = x - \frac{\ln(x+1)}{x+1} - 11$ $f(x) = x - \frac{\ln(x+1)}{x+1} - 11$ $f(x) = x - \frac{\ln(x+1)}{x+1} - 11$ $f(x) = +\infty (1)$ $\frac{1 - \ln(x+1)}{(x+1)^2} = \frac{g(x)}{(x+1)^2} (2)$ $f(x+1)^2 = \frac{g(x)}{(x+1)^2} (2)$ $f(x+1)^2 = \frac{g(x)}{(x+1)^2} (2)$ $f(x+1) = \frac{1}{x+1}$ $g(x) = 1$ $g($	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

منحة 4 من 5 3as.ency-education.com

