الجمهورية الجزائرية الديمقراطية الشعبية

تاتويات : البياضة الجديدة - محمد العيد ال خليفة بالدبيلة - حنكة على دورة ماي 2015

امتحان بكالوريا تجريبية لتعليم الثانوي

الشعبة: تقنى رياضي

المدة : 4 ساعة و 30 د

اختبار في مادة : الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول : (04 نقاط)

 $u_{n+1}=rac{u_n-8}{2u_n-9}$ متثالیهٔ عددیهٔ معرفهٔ علی \mathbb{N}^* کما یلی: $u_0=-3$ و $u_0=-3$

 $f(x) = \frac{x-8}{2x-9}$: — $\mathbb{R} - \left\{\frac{9}{2}\right\}$ با الدالة f المعرفة على $f(x) = \frac{x-8}{2x-9}$ با استعمل منحنى الدالة $f(x) = \frac{y}{2}$ لتخمين اتجاه تغير المنتالية $f(x) = \frac{x-8}{2x-9}$

 $u_n < 1: n$ جرهن بالتراجع انه من اجل كل عدد طبيعي 2

3. برهن ان (un) متزايدة ثم استنتج انها متقاربة

 $v_n=1-u_n:n$ عنبر المتتالية (v_n) حيث من اجل كل عدد طبيعي 4.

 $0 < v_n < 4\left(\frac{1}{7}\right)^n$: ثم استنتج ان $v_{n+1} < \frac{1}{7}v_n$: $v_n = 0$ عدد طبیعی (أ) بر هن انه من اجل کل عدد طبیعی $v_n = 0$ و $v_n = 0$ بر هن انه من المتتالیة $v_n = 0$ و $v_n = 0$ و $v_n = 0$ احسب نهایة کل من المتتالیة $v_n = 0$ و $v_n = 0$

التمرين الثاني: (05 نقاط)

 $(z-i)(z^2+2z+4)=0$: z=0 المعادلة ذات المجهول z=0: z=0 المعادلة (z=0) (z=0) المعادلة أدات المجهول z=0: z=0 المعادلة المركبة (z=0) المعادلة أدات المجهول z=0: z=0 المعادلة المعادلة المعادلة أدات أدات المعادلة أدات المعاد

2. ينسب المستوي المركب إلى معلم متعامد و متجانس $(0; \vec{U}, \vec{V})$ ، نعتبر النقط A و B لاحقتهما على الترتيب S . $Z_B = -1 - \sqrt{3}i$ ، $Z_A = i$

أ) اكتب العبارة المركبة للتشابه ك ثم عين نسبته و زاويته

 $A_{n+1} = S(A_n): n$ عدد طبیعی $A_0 = A$ المعرفة ب $A_0 = A$ المعرفة ب $A_n = S(A_n): n$ عدد طبیعی و نرمز ب A_n المعرفة النقطة A_n

 $z_n=2^ne^{i\left(rac{n}{2}+nrac{5\pi}{6}
ight)}:n$ عين لاحقتي النقطتين A_2 و A_2 - برهن انه اجل كل عدد طبيعي a_1

3. نعتبر في $\mathbb{Z} \times \mathbb{Z}$ المعادلة ذات المجهول (x; y) : (x; y) المعادلة (*). (x; y) المعادلة (*). (x; y) المعادلة (*). (x; y) المعادلة (*). (x; y) حل للمعادلة

ب) استنتج مجموعة الاعداد الطبيعية n بحيث تكون النقط A_n تنتمي الى المحور الحقيقي الموجب

 OA_nA_{n+3} عدد طبيعي n العدد $\frac{Z_{n+3}}{Z_n}$ تخيلي صرف. استنتج طبيعة المثلثات A_n

5. عين بدلالة n قيسا للزاوية $(OA_n; OA_{2n}; OA_{2n})$ ثم استنتج قيم n بحيث تكون النقط A_{2n} 0 و A_{2n} 0 في استقامية

التمرين الثالث: (04 نقاط)

الفضاء منسوب إلى معلم متعامد ومتجانس $(0;\vec{\imath},\vec{j},\vec{k})$. نعتبر النقطتين A(3,-1,2) ، A(3,-1,2) و الفضاء منسوب إلى معادلته الديكارتية $G(\vec{A}-\vec{G}\vec{B})=0$ و النقطة $G(\vec{A}-\vec{G}\vec{B})=0$ معادلته الديكارتية $G(\vec{A}-\vec{G}\vec{B})=0$ و النقطة $G(\vec{A}-\vec{G}\vec{B})=0$

(P) و المستقيم (AB) و المستقيم (AB) أم عين احداثيات (AB) نقطة تقاطع المستقيم (AB) و المستوي (AB)

2. أ) عين طبيعة و عناصر (E) مجموعة النقط M من الفضاء التي تحقق

 $\| 3MA - MB \| = \| MA - MB \|$. (E) المستوي (G), و استنتج الوضعية النسبية بين المجموعة (G) و

(E) و المستوي المسافة بين التقطة G و المستوي (P). و استنتج الوضعية النسبية بين المجموعة (E) و المستوي (P).

3. أ) اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل G و يعامد (P), ثم عين احداثيات H نقطة تقاطع (P) و (Δ) باستنتج المسافة بين النقطة Δ و المستقيم (Δ).

 $x=3+\alpha-\beta$ و ان معادلته $y=-1-\alpha+3\beta$; $(\alpha;\beta)\in\mathbb{R}^2$ هو (AGH) و ان معادلته $z=2+2\alpha-4\beta$

x - y - z - 2 = 0 الديكارتية هي

ب) اثبت ان المستويين (P) و (AGH) متقاطعان وفق مستقيم يطلب كتابة تمثيله الوسيطي المتمرين الرابع: (07 نقاط)

 $g(x) = e^{\frac{x}{x+1}}$: نعتبر الدالة g المعرفة على $g(x) = e^{\frac{x}{x+1}}$: كما يلي $g(x) = e^{\frac{x}{x+1}}$ الدالة $g(x) = e^{\frac{x}{x+1}}$ ثم شكل جدول تغير اتها .

0 < g(x) < e فان: x > -1 عدد حقیقی در دون انه من اجل کل عدد حقیقی در دون انه د

 $\begin{cases} f(x) = x + 1 - e^{\frac{x}{x+1}}, & x \neq -1 \\ f(-1) = 0 \end{cases}$ الدالة f المعرّفة على المجموعة $f(x) = x + 1 - e^{\frac{x}{x+1}}$ المعرّفة على المجموعة ال

 (C_{f}) تمثيلها البياني في المستوي المنسوب إلى معلم متعامد ومتجانس $(C_{f}, \vec{i}, \vec{j})$.

 $+\infty$ عين نهاية الدالة f عند f عين نهاية الدالة

-1 عدد العدد f قابلة للاشتقاق عدد العدد f أنه يرهن ان الدالة f قابلة للاشتقاق عدد العدد f اكتب معادلة المماس f للمنحنى f عند النقطة ذات الفاصة f عند النقطة أدات الفاصة f المداد النقطة أدات الفاصة أدا

د)بر هن ان المستقيم (C_f) ذي المعادلة y=x-e+1 مقارب ماثل ل (C_f) ثم ادرس الوضع النسبي الس (C_f) و (C_f)

2. ا) من اجل کل x من $f''(x) = \frac{2x+1}{(x+1)^4} e^{\frac{x}{x+1}}$ و تحقق ان: f'(x) = -1; f''(x) = -1 ثم استنتج اتجاه تغیر الدالة f

 $\lim_{x\to +\infty}f'(x)=\lim_{x\to -1}f'(x)=1$ نقبل ان f' نقبل ان الدالة $f'(x)=\lim_{x\to +\infty}f'(x)$

-0.72 < lpha < -0.71 ج) بر هن ان المعادلة f'(x) = 0 تقبل حلين احدهما معدوم و الآخر lpha حيث f'(x) عبد ثم استنتج اشارة f'(x)

3. ادرس اتجاه تغیر الدالة f، ثم شکل جدول تغیر اتها

 $(f(\alpha) = 0.20)$ (ناخذ: (C_f)) و (D)، (ناخذ: 4).

الموضوع الثاني

التمرين الأول : (05 نقاط)

 $1 \le a \le b \le c$: حيث حيث b;a . ا

 $bc = \overline{545}$ و $b + c = \overline{46}$ و كاما ان في النظام ذي الاساس a يكون a و b و علما ان في النظام ذي الاساس

(1) 21x - 17y = 8: 21x - 17y = 8: 21x - 17y = 8: 21x - 17y = 8

. (1) عين الثنانية $(x_0; y_0)$ حل للمعادلة (1).

ب) حل في 2 المعادلة (١) .

2. ا) ادرس حسب قيم العدد الطبيعي n بواقي القسمة الاقليدية للعدد 9n على 13 α, β بين أنه إذا كانت الثنائية α, β حل للمعادلة (1) فان α, β فان α, β الثنائية α, β

 $y \equiv 0[13]$: فان $x \equiv 0[4]$ حل للمعادلة (1) و $x \equiv 0[4]$ فان الثنائية (x,y) حل للمعادلة (1) و PGCD(x, y) = 4: عين كل الثنائيات (x, y) حلول المعادلة (1) بحيث بعين كل الثنائيات

التمرين الثاني: (05 نقاط)

عدد مرکب z ; $P(z) = z^3 - 4z^2 + 6z - 4$ عدد مرکب P(z) - 4

z)=(z-2) ($z^2+\alpha z+\beta$) z کل کل z (بحیث من اجل کل α و α بحیث α العددین العددین الحدیث الحدیث α الحسب (أ P(z) = 0 المعادلة P(z) = 0 المعادلة المركبة الشكل الأسى

- ا- ينسب المستوي المركب إلى معلم متعامد و متجانس $(0; \vec{U}, \vec{V})$. ليكن S التحويل النقطى الذي ير $z'=rac{1+l}{2}$: حيث z' على نقطة M' ذات اللاحقة Z' حيث اللاحقة M' ذات اللاحقة M'
 - 1. بين أن S تشابه مباشر بطلب تعيين عناصر ه المميزة
- $A_{n+1}=S(A_n):n$ عند طبيعي $A_n=A_0=A_0$ المعرفة ب $A_n=A_0$ المعرفة ب $A_n=A_0$ و نرمز بــ ير الى لاحقة النقطة برم

A . A . A . A . A . (1)

- ب) من اجل كل عدد طبيعي n نضع: n=0 من $u_n=0$. اثبت ان المتتالية (u_n) هندسية يطلب تعيين اساسها و $u_n=2\left(\frac{1}{\sqrt{2}}\right)^n: n$ حدها الاول ، ثم تحقق انه من اجل كل عدد طبيعي
 - 0.1 ايتداء من اي رتبة n_0 تنتمي كل النقط A_{n_0} الى القرص الذي مركزه 0 و نصف قطره 0.1
 - 4. هل المتثالية (س) متقاربة ؟ علل ؟
 - OA_nA_{n+1} عدد طبیعت المثلث n فان i فان i فان n غالث المثلث المثلث المثلث n من اجل كل عدد طبیعت المثلث n
- منتالية معرفة على $v_n = OA_0 + OA_1 + \dots + OA_n$ عبر عن v_n عبر عن v_n بدلالة v_n . اوجد lim v_n . فسر النتيجة

التمرين الثالث: (04 نقاط)

B(-2,1,-8) ، A(1,-2,3) الفضاء منسوب إلى معلم متعامد ومتجانس $(0;\vec{\imath},\vec{\jmath},\vec{k})$. نعتبر النقط C(0,0,-2) 9

 $3\overline{GA}-\overline{GB}=\overline{0}$: معادلته الديكارتية x-2y+3z=0 و النقطة G معرفة ب

معادلته $\overline{AM^2} - \overline{CM^2} = 10$ معادلته M من الفضاء حيث M من الفضاء حيث X - 2y + 5z = 0

2. برهن ان (S)مجموعة النقط M من الفضاء حيث 2z=0 حيث $2x+y^2+z^2-2x+y+2z=0$ هي سطح كرة يطلب تعيين مركزها I و نصف قطرها I

r هي دائرة يطلب تعيين مركزها w و نصف قطرها r هي دائرة يطلب تعيين مركزها r

 $-\overrightarrow{GA} + \overrightarrow{GB} + \alpha \overrightarrow{GC} = \overrightarrow{0}$: معرفة بـ 4. لتكن G_{α} نقطة من الفضاء معرفة بـ

 $\{(A;-1),(B;1),(C;lpha)\}$ مرجحا للجملة مرجحا الجملة التي يكون من اجلها G_lpha مرجحا الجملة الجملة الم

 \mathbb{R}_+^* بر هن ان : $G_lpha = \frac{1}{lpha} \, \overline{G}_lpha = 0$ ، ثم استنتج مجموعة النقط م $G_lpha = 0$ عندما يتغير $G_lpha = 0$

أ) عين معادلة المستوي (Q) الذي يمس (S) في النقطة 0

ب) اثبت ان المستويين (P) و (Q) متقاطعان وفق مستقيم يطلب تمثيل وسيطي له

ج) اكتب معادلة ديكارتية للمستوي (ABC)، ثم استنتج تقاطع المستويات (P)، (ABC) و (Q) التمرين الرابع : (00) نقاط)

ا- باستعمال قابلية الاشتقاق للدالة $x \to lnx$ عند 1، بين ان : 1 $\lim_{x \to 1} \frac{lnx}{x-1}$ ثم استنتج ان : $\ln(x+1)$

 $\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$

اا- نعتبر الدالمة f المعرفة على $f(x) = \ln(x + \sqrt{x^2 - 1})$: -1 المعرفة على $f(x) = \ln(x + \sqrt{x^2 - 1})$ البياني في معلم متعامد ومتجانس f(x) .

 $f(x) = lnx + ln\left(1 + \sqrt{1 - \frac{1}{x^2}}\right)$: $x \ge 1$ عدد حقیقی $x \ge 1$ عدد حقیقی $x \ge 1$ بین انه من اجل کل عدد حقیقی $x = 1 = \sqrt{1 - \frac{1}{x^2}} \left(x\sqrt{\frac{x-1}{x+1}}\right)$ بین انه من اجل $x \ge 1$ بین ان: $x \ge 1$ بین ان:

 $y=\sqrt{1-rac{1}{x^2}}$ بين ان الدالة f غير قابلة لاشتقاق عندf فسر النتيجة بيانيا (يمكن وضع

. $\lim_{x\to+\infty} f(x)$ | Leave (1.2)

f بین انه من اجل کل عدد حقیقی من $f'(x) = \frac{1}{\sqrt{x^2-1}}$: $f'(x) = \frac{1}{\sqrt{x^2-1}}$: f'(x) =

x=3 و x=1 المحدد (C_f) و محور الفواصل و المستقیمین اللذین معادلتاهما x=3 و x=3 استنتج ان x=3 استنتج ان x=3 استنتج ان x=3 المحدد x=

اله نعتبر الدالة g المعرفة على المجال g: -10 بg: -10 بسمي g نسمي g المجال g تمثيلها البياني -111

 $g(x) \geq 1$. بين انه من اجل كل عدد حقيقي $x \geq 0$ فان: 1

. (C_g) نقطة من M'(y,x) فان (C_f) فان M(x,y) نقطة من gof(x)=x . 1) بين ان gof(x)=x بين ان gof(x)=x بين ان بين ان gof(x)=x أرسم المنحنى (C_g) في المعلم السابق .