	احْدَبار البكالوريا التجريبي في مادة الرياضيات
	النستوى: 3 تقتي رياضي 2015//2014 السيدة، 4 ساعات و نصف
:	عليم أحد الموضوعين الثاليين على الخوار
	التمرين الأول(0.5.)
	1/ أوجد القاسم المشترك الأكبر للأعداد 4 ، 18 ، 18
	2/ تعتبر المعادلة ذات المجهولين الصحيحين x و بر التالية : (1) 84 = x4 + 4y
	 أ- بين أنه إذا كانت الثنائية (x, y) حالا للمعادلة (1) فإن x مضاعف للعدد 2. باستنتج حلول المعادلة (1)
ľ	13 نضع (x, y) حيث (x, y) حلول المعادلة (1) ، عين القيم المميكنة لي d = p god (x, y)
	14 عين كل الثنانيات (x, x) حلول المعادلة (1)و التي تحقق: 0 × x. x
	<i>Γ Λ عدد طبيعي يكتب 30αβ</i> 1 في النظام ذي الإساس 5 ويكتب 55αβ في النظام دي الأساس /
	- عين α و β ثم استنتج بر واكتبه في النظام العشري .
	التمرين الثاني (04 ت)
	$1 - 4Z^2 - 12Z + 153 = 0$ المعاذلة التالية $0 = 153 + 12Z - 4Z^2 - 12Z + 153$
	التعتبر النقط $A = 3$ من المستوي المركب المزود بمعلم متعامد و متجانس ((i, i, j)) وحدة الرسم : $d = 1$
	D, C, B, H
	على الترتيب، الشعاع في المعرف باللاحقة : $Z_{\overline{\omega}} = -1 + \frac{5}{2}i$
	1/ - عين اللاحقة Zo للنقطة Q صورة B بالانسحاب t الذي شعاعه W.
	P - $\frac{1}{3}$ و نسبته C و نسبته h مبورة h بالتحاكي h الذي مركزه C و نسبته Z_R
	ج/ - عين اللاحقة Z _s للنقطة S صورة D بالدوران r الذي مركزه A و زاويته 2 – .
	د / - أنشى النقط: S, R, Q, D
	3 - 1/ أثبت أن الرباعي DQRS متواري اضلاع
	ب/ احسب ZR-ZQ ثم استنتج الطبيعة الخاصة لمتوازي الأصلاع DQRS .
	ج/ بر هن أن النقط R,Q,D, تنتمي إلى دائرة واحدة (c) يطلب تعيين لاحقة مركزها ونصف قطرها
;	
	التمرين الثالث (40ن)
	نعتبر في \mathbb{R} المعادلة التفاضلية (1) المعرفة كما يلي : (1) 0 = 2y + 2y + .
	1/ حل المعادلة التفاضلية (1) .
	2/ عين الدالة f حل للمعادلة التفاضلية (1) و التي تحقق : 1 = (0).
<i>n</i> =	$= \frac{1}{b-a} \int_a^b f(x) dx$ القيمة المتوسطة m للدالة f على المجال [n; n + 1] علما أن $f(x) dx$ = $\frac{1}{b-a} \int_a^b f(x) dx$
	$b = a - a$. $b = n + 1; a = n \cdot (1)$ هي حل المعادلة التفاضلية $f \cdot b = n + 1; a = n \cdot (1)$
	ا $U_n = \frac{1}{2}(1-e^{-2})e^{-2n}$ عدد طبيعي $U_n = U_n = \frac{1}{2}(1-e^{-2})e^{-2n}$ متتالية عددية معرفة كما يلي : $U_n = \frac{1}{2}(1-e^{-2})e^{-2n}$

ľ

. .

11 الصلحة 1 من 2 افلب الصفح ار- احتب التيم المضيوطة لـ U2; U1; U0 ب- بين أن (Un) متتالية هندسية يطلب تعيين حدها الأرل و أنتاسها q S = U0 + U1 + ··· + U2010 : حيث S = U0 + U1 + ··· التمرين الرابع (07ن) -4+(4-2x) المعرفة على R كما يلي: 2x + 4+(4-2x) 1- ادرس تغير ات الدالة g 1.59 - α مبين أن المعادلة: g(x) = 0 تقبل حلا وحيدا α حيث $g(0) \rightarrow \alpha \rightarrow g(0)$ R استنتج إشارة (g(x) على R ال – نعتبر الدالة العددية f المعرفة على R ب: $\frac{2x-2}{e^x-2x}$ ، نسمي (c_f) تمثيلها البياني في مستو Π منسوب إلى معلم متعامد و متجانس (0; 1, j) حيث (الوحدة : 1cm) د احسب النتيجة $\lim f(x)$ د ا $\lim f(x)$ وفسر هندسيا النتيجة f(x) $f(x) = \frac{g(x)}{(e^x - 2x)^2}$: R من اجل كل x من R : $f(x) = \frac{g(x)}{(e^x - 2x)^2}$ د- عين دون حساب : $f(\alpha) = \lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha}$ وفسر النتيجة بيانيا $x - \alpha$ $f(\alpha) = \frac{2-\alpha}{1}$ is a minimum of $f(\alpha) = \frac{2-\alpha}{1}$ 5- احسب : f(1) ، f(2) ، f(2) ، f(1) ثم أنشئ المنحنى (رC) $F(x) = -x + \ln(e^x - 2x)$: كمايلي \mathbb{R} كمايلي $F(x) = -x + \ln(e^x - 2x)$ ا/ احسب 'F الدالة المشتقة للدالة F ، ماذا تستنتج ؟ ب/ احسب مساحة الحير المستوي المحدد بالمنحني (c) والمستقيمات التي معادلاتها : 0 = y ، 0 = x ، 1 = x بالتوفيق صفحة 2 من 2 11 انت 11

الموصوع الثاني

التمرين الأول : (4 نقاط) 1/ أدرس حسب قيم العدد الطبيعي n يوافي القسمة الإقليدية للحددين: "S و "8 على 3 ا. 2/ n i c i b i c /2 و n أغذاد طبيعة غير معدرمة بر من صحة الخاصيتين التاليتين : $a^{2} = b^{2}[n] \quad a + c = b + d[n] : b = c = d[n] \quad a = b[n]$ 3 حين باقى القسمة الإقليدية للعدد / على 13 حيث : 2010¹⁴³⁰ + 2010¹⁴³⁰ + 1430²⁰⁰⁹ 4/ أثبت أنه من أجل كل عدد طبيعي k يكرن العدد : [13] ** (5k + 6) = (5k + 1) 64* - 5^{24 + 3} = (5k + 6) 5/ عين مجموعة قيم العدد الطبيعي k حتى يكون : [13] = 0^{2k-1} - 5^{2k-1} = 0 التمرين الثاني : (4 نقاط) الفضناء منسوب إلى معلم متعامد و متجانس ((O;i, j, k)). نعتبر النقط التالية $D(0,0,-3) \cdot C(3,-3,1) \cdot B(2,2,2) \cdot A(4,0,-3)$ 1/ عن معادلة ديكارتية للمستوي (P) محور القطعة المستقيمة [AB] . 2/ في مايلي ، نقبل أن المستويين (P) ، (P) محوري القطعتين [BC] و [DC] على الترتب ، معرفان بالمعادلتين: $(P_2):3x-3y+2z-5=0$ $(P_1): 2x - 10y - 6z - 7 = 0$. ا - بين أن تقاطع المستويات (P) ، (P) و (P2) هو نقطة E يطلب تعيين إحداثياتها ب- بين أن النقط A ، B ، B و D تقع على سطح كرة مركز ها النقطة E يطلب تعيين نصف قطرها. التمرين الثالث : (5 نقاط) المستوي المركب منسوب إلى معلم متعامد و متجالس (0,7,7) $z_{I} = 1 - 2i$ ، $z_{B} = -3$ ، $z_{A} = 3 + 2i$: الترتيب B = -3 ، $z_{B} = -3$ ، $z_{A} = 3 + 2i$ 2c 1-7-6;) ا_ علم النقط A ، B و I في المُعلم (O,ī, j) . $z = \frac{z_I - z_A}{z_I - z_n}$ على الشكل الجبري $z = \frac{z_I - z_A}{z_I - z_n}$ ج - ما ذا يمكن أن تستنتجه حول طبيعة المثلث IAB ؟ . ا د ـ اوجد ₂ لاحقة النقطة C حيث C صورة النقطة / بالتحاكي الذي مركزه النقطة A و نسبته 2 . هـ - لتكن D مرجح الجملة : {(A,1), (B;-1), (C;1)} أوجد لاحقة النقطة D 5-41 و _ بين أن ABCD مربع. , $\overline{MA} - \overline{MB} + \overline{MC} = \frac{1}{2} |\overline{MA} + \overline{MC}|$ عين ثم انشى (S) مجموعة النقط M من المستوي حيث (S) عين ثم انشى (S) مجموعة النقط M $\overline{MA} - \overline{MB} + \overline{MC} = 4\sqrt{5}$: $L = 4\sqrt{5}$ A not linear not mark with the mark of them (E) ا ـ بين أن B تنتمي إلى (E) . ب عين و أنشى المجموعة (E) .

الصفحة 2/1 أقلب الصفحة

التمرين الرابع : (7 تقاط) $f(x) = x - 1 + 2 \ln \left(\frac{x}{x+1}\right)$ م دالة ذات متغير حقيقي ير معرفة على المجموعة]10+00 [1] [1- (10- [1-: نسبى (C) المنحى المعنل للدالة r في مستو منصوب إلى معلم متعامد و متجانس (O;i, j) . 1/ أدرس تعيرات / 12 ا - بين أن المستقيم (٥) الذي معادلته : ١-x = ر مقارب مال للمنحنى ب- أدر من وضعية المنحنى (C) بالنسبة إلى (A) . (C) ج - اثبت ان النقطة $\left(\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}\right)$ مركز تناظر للمنحنى (C) د - بر هن أن المعادلة 0 = (x) تقبل حلا وحيدا م حيث ، 2 > 1 < a</p> هـ - أرسم المنحنى (C) . 3/ أ - باستعمال المكاملة بالتجرئة عين على المجال]∞+; (دالة أصلية للدالة | x + x | n | x + x]. ب- استنتج دالة أصلية للدالة ٢ على إمم: (٥] . ج - احسب (α) مساحة الحير المستوي المحدد بالمتحدي (C) ومحرر الفواصل والمستقيمين اللذين معادلتاهما: x=α,x=1 حيث x=1 $S(\alpha) = \frac{1}{2}(\alpha^2 + 2\alpha - 3) + 2\ln\left(\frac{\alpha}{4}\right) = \frac{1}{2}(\alpha^2 + 2\alpha - 3) + 2\ln\left(\frac{\alpha}{4}\right)$ $U_n = f(n) - n + 1$: منتالية عددية معرفة من أجل كل عدد طبيعي غير معدوم n + 1: (U_n) منتالية عددية معرفة من أجل كل ا - بر من أن (ر) متتالية متز ايدة . $S_n = U_1 + U_2 + \dots + U_n$ احسب _S بدلالة n ثم S بالتوفيق الصفحة 2/2 انت •• 66