السنة الدراسية:2019/2018

القسم 3 ت ر

مديرية التربية لولاية تيزي وزؤ ثانوية بوجيمع

فرض محروس رقم 1 للفصل الثاني

التمرين الأول:

 $u_{n+1} = 1 + \sqrt{u_n - 1}$ n و من أجل كل عدد طبيعي $u_0 = \frac{3}{2}$: $u_0 = \frac{3}{2}$ المعرفة على (u_n) المعرفة على (u_n) المعرفة على المعرفة المعرفة على المعرفة على المعرفة على المعرفة على المعرفة على المعرفة المعر

ب أثبت أن المتتالية (u_n) متزايدة واستنتج ان المتتالية (u_n) متقاربة نحو نهاية يطلب تعيينها.

- $v_n = \ln(u_n 1)$ بامعرفة على \mathbb{N} ب: 2.
- أ. اثبت ان المتتالية $\left(v_{n}
 ight)$ هندسية اساسها q و حدها الاول v_{0}
- ب. اكتب v_n بدلالة u و استنتج عبارة u_n بدلالة v . ثم احسب v بدلالة v

 $S_n = v_0 + v_1 + \dots + v_n$ ج. أحسب المجموع S_n

 $P_n = (u_0 - 1)(u_1 - 1)....(u_n - 1)$ د. استنتج حساب الجداء P_n حيث:

التمرين الثاني:

5x-6y=3....(E) نعتبر في المجموعة \mathbb{Z}^2 المعادلة:

.3 أ بين أن إذا كانت الثنانية (x;y) حلا للمعادلة (E) فإن (E) مضاعف ل (1

 \mathbb{Z}^2 المعادلة (E) أم حل في \mathbb{Z}^2 المعادلة (E)

$$.$$

$$\begin{cases} x \equiv -1[6] \\ x \equiv -4[5] \end{cases}$$
 : (S) استنتج حلول الجملة

ي عددان طبيعيان حيث : $a=\overline{1lpha\,0lpha\,00}$ في النظام ذي الأساس 3 و $b=\overline{lphaeta\,0\alpha\,00}$ في النظام ذي الأساس 5.

. (E) عين α و β حتى تكون الثنائية (a;b) حلا للمعادلة α

بالتوفيق للجميع

انتهى

3as.ency-education.com

 $u_{n+1} = 1 + \sqrt{u_n - 1}$ المعرفة على $u_0 = \frac{3}{2}$ و من أجل كل عدد طبيعي العددية (u_n) المعرفة على (u_n) أ. برهان بالتراجع أن : من اجل كل عدد طبيعي n : $1\langle u_n \langle 2 : n$ الخاصية : من اجل كل عدد طبيعي P(n) $1\langle u_n \langle 2 \rangle$ محيحة P(0) : الدينا: P(0) اي الدينا: P(0) صحيحة $u_0 = \frac{3}{2}$ $1\langle u_n\langle 2 | P(n)$ نفرض صحة P(n) اي آن: 4 ** $1\langle u_{n+1}\langle 2 :$ نبرهن صحة P(n+1) اي آن P(n+1) $0+1\langle \sqrt{u_n-1}+1\langle 1+1:0 \rangle \sqrt{0} \langle \sqrt{u_n-1}\langle \sqrt{1}:0 \rangle \sqrt{u_n-1}\langle 1-1:0 \rangle \sqrt{u_n-1}$ دينا: $0+1\langle \sqrt{u_n-1}+1\langle 1+1:0 \rangle \sqrt{u_n-1}\rangle \sqrt{u_n-1}$ منه: $1\langle u_n \rangle \sqrt{u_n-1}$ منه: $2 \setminus u_{n+1}$ أي: P(n+1) صحيحة $1\langle u_n\langle 2:n$ إذن: من اجل كل عدد طبيعي ب إثبات أن المتتالية (u_n) متزايدة $u_{n+1} - u_n = \sqrt{u_n - 1} + 1 - u_n = \sqrt{u_n - 1} - \left(u_n - 1\right) = \frac{\left(\sqrt{u_n - 1}\right)^2 - \left(1 - u_n\right)^2}{\sqrt{u_n - 1} + \left(u_n - 1\right)} = \frac{-u_n^2 + 3u_n - 2}{\sqrt{u_n - 1} + \left(u_n - 1\right)}$ الدينا: $-u_n^2+3u_n-2$ د $u_n-1>0$ د $u_n-1>0$ منه: اشارة $u_n-1>0$ منه: اشارة $u_n-1>0$ منه: اشارة $u_n-1>0$ د الدينا: $u_n-1>0$ $\Delta = b^2 - 4ac = 3^2 - 4 \times (-1)(-2) = 1$ دراسة اشارة $-x^2 + 3x - 2$ - دراسة اشارة - دراسة - دراسق - دراسة - دراسق - دراسة - دراسة - دراسة - دراسة - دراسة - دراسة - دراسق - دراسق $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-3 + 1}{-2} = 1$ و $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-3 - 1}{-2} = 2$ (هما: $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-3 - 1}{-2} = 2$ و $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-3 - 1}{-2} = 2$ $-x^2 + 3x - 2$ جدول اشارة $1\langle u_n\langle 2:$ بما ان: فإن: (u_n) منزايدة $u_{n+1} - u_n > 0$ فإن: *) استنتاج ان المتتالية (u_n) متقاربة نحو نهاية يطلب تعيينها. $\lim u_n = 2$ بما أن: المتتالية (u_n) متزايدة و محدودة من الأعلى بالعدد 2 فإنها متقاربة و $v_n = \ln(u_n - 1)$:بالمعرفة على المعرفة (v_n) المعرفة (2 . v_0 هندسية اساسها q و حدها الاول (v_n) $v_{n+1} = \ln\left(u_{n+1} - 1\right) = \ln\left(\sqrt{u_n - 1} + 1 - 1\right) = \ln\left(\sqrt{u_n - 1}\right) = \frac{1}{2}\ln\left(u_n - 1\right) = \frac{1}{2}v_n$ لاينا: $v_0 = \ln(u_0 - 1) = \ln(\frac{3}{2} - 1) = \ln(\frac{1}{2}) = -\ln 2$ و حدها الأول: $q = \frac{1}{2}$ منه: (v_n) منة $v_n = v_0 q^n = -\ln 2 \left(\frac{1}{2} \right)^n$ منتالية هندسية حدها الأول v_0 منه: (v_n) : : لدينا: (v_n) $u_n = e^{v_n} + 1 = e^{-\ln 2\left(\frac{1}{2}\right)^n} + 1$ استنتاج عبارة $u_n = u_n - 1$: لدينا $v_n = \ln\left(u_n - 1\right)$: لدينا $u_n = e^{v_n} + 1 = e^{-\ln 2\left(\frac{1}{2}\right)^n} + 1$ استنتاج عبارة $u_n = e^{v_n} + 1 = e^{-\ln 2\left(\frac{1}{2}\right)^n} + 1$ $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left(e^{-\ln 2 \left(\frac{1}{2} \right)^n} + 1 \right) = 1 + 1 = 2 : لديد : لديد : لديد الديد الد$ $q = \frac{1}{2} \langle 1 \circ \lim_{n \to +\infty} \left(e^{-\ln 2 \left(\frac{1}{2} \right)^n} \right) = e^0 = 1 : \dot{V}$ $S_n = v_0 + v_1 + \dots + v_n$ ج. حساب المجموع S_n حيث: $S_n = v_0 + v_1 + \dots + v_n = v_0 \frac{1 - q^{n+1}}{1 - q} = -\ln 2 \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = -2\ln 2 \left(1 - \left(\frac{1}{2}\right)^{n+1}\right)$

3as.ency-education.com

5x-6y=3....(E): التمرين الثاني: نعتبر في المجموعة \mathbb{Z}^2 المعادلة:

يان أنه إذا كانت الثنائية (x;y) حلا للمعادلة (E) فإن (E) مضاعف ل (E)

5x = 3(2y+1) نكافئ 5x = 6y+3 تكافئ 5x - 6y = 3

لدينا:3 يقسم x و x و وو أوليان فيما بينهما منه: 3 يقسم x (حسب مبرهنة قوص) و بالتالي : x مضاعف x

(E) خاصا للمعادلة $y = \frac{5 \times 3 - 3}{6} = 2$ نجد $y = \frac{5 \times 3 - 3}{6} = 2$ اذن: (E) خاصا للمعادلة (E) با استنتاج حلا خاصا للمعادلة (E) بغرض

(*) 5(x-3)=6(y-2) : بالطرح طرف لطرف نجد $\begin{cases} 5x-6y=3 \\ 5\times 3-6\times 2=3 \end{cases}$ بالطرح طرف لطرف نجد \mathbb{Z}^2 المعادلة (E)

x = 6k + 3 و 6 و 5 أوليان فيما بينهما منه حسب قوص 6 يقسم x - 3 = 6k و منه: x - 3 = 6k و منه: x - 3 = 6k

 $S = \left\{ \left(6k+3;5k+2\right); k \in \mathbb{Z} \right\}$ و بالتالي: y = 5k+2 اذن : $5 \times 6k = 6(y-2)$: بالتعويض في (*) نجد

 $\begin{cases} x \equiv -1[6] \\ x \equiv -4[5] \end{cases}$: (S) استنتاج حلول الجملة

n=6k+3 تكافئ $\begin{cases} x=-1[6] \\ x=-4[5] \end{cases}$ أي: $\begin{cases} x=6m-1 \\ x=5n-4 \end{cases}$ و بالتالي: $\begin{cases} x=-1[6] \\ x=-4[5] \end{cases}$

 $x = 5(6k+3)-4 = 30k+11; k \in \mathbb{Z}$ each n = 6k+3

.5 و $b=\overline{\alpha\beta0\alpha}$ في النظام ذي الأساس 3 و $b=\overline{\alpha\beta0\alpha}$ في النظام ذي الأساس 3 و $b=\overline{\alpha\beta0\alpha}$ في النظام ذي الأساس 5.

. (E) عيين α و β حتى تكون الثنائية (a;b) حلا للمعادلة α

 $a = \overline{1\alpha 0\alpha 00}^3 = 1 \times 3^5 + \alpha \times 3^4 + \alpha \times 3^2 = 243 + 81\alpha + 9\alpha = 90\alpha + 243$ الدينا:

 $\beta \le 4$ و لاینا: $b = \overline{\alpha\beta0\alpha}^5 = \alpha \times 5^3 + \beta \times 5^2 + \alpha \times 5^0 = 125\alpha + 25\beta + \alpha = 126\alpha + 25\beta$ و لاینا:

بما أن : الثنانية (a;b) حلا للمعادلة (E) منه : 5a-6b=3 و بالتالي: (a;b)=5a-6b=3 ينتج: (a;b)=5a-6b=3 بنتج: (a;b)=5a-6b=3

و بالتالي: $(\alpha; \beta) = (2; 4)$ حل للمعادلة.

3as.ency-education.com