الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

السنة الدراسية ؛ 2019–2020	مديرية التربية لولاية الأغواط
المستوى : الثالثة علوم تجريبية	ثانوية غزاوي بلقاسم بآفلو
التاريخ : 02 مارس 2020	إمتحان الثلاثي الثاني
المدة : 3 ساعات	إختبار في مادة الرياضيات

التمرين الأول: 04 نقاط

هُتوي صندوق على ثلاث كرات بيضاء و كرتان حمراء . لا يمكن التمييز بينهم . نسحب عشوائيا كرتان في آن واحد .

- 1) نعتبر الحادثة A الحصول على كرتان من نفس اللون . و الحادثة B الحصول على كرتان حمراء على الأكثر .
 - اً- أحسب كلا من $P\left(A\right)$ و $P\left(B\right)$

. مل الحادثتان A و B مستقلتان ؟ علل ذلك .
$$P_B\left(A
ight)$$
 غم إستنتج $P\left(A\cap B
ight)=rac{1}{10}$. مل الحادثتان

- 2) ليكن المتغير العشوائي X الذي يرفق بكل سحبة إذا كانت الكرتان من نفس اللون يربح اللاعب نقطتان و تنتهي اللعبة . و إذا كانت مختلفتان في اللون يخسر نقطة واحدة و تتحاح له فرصة ثانية بإرجاع الكرتان إلى الصندوق وإعادة عملية السحب بنفس الكيفية إلى غاية السحب الثالث (فرصة ثالثة وأخيرة) و تنتهي اللعبة .
 - $w = \{0; 1; 2; -3\}$ هي X هي المتغير العشوائي A أ-

. X و
$$P\left(X=1\right)=\frac{24}{100}$$
 و $P\left(X=0\right)=\frac{144}{1000}$ ثم أتمم تعريف قانون الإحتمال للمتغير $P\left(X=1\right)=\frac{24}{1000}$. $P\left[\ln\left(2X+6\right)<\ln(X+8)\right]=0,384$. ت- بين أن :

التمرين الثانى: 05 نقاط

- $(i\;z\;+2\sqrt{3}\;)(z^{\;2}-6\;z\;+12)=0$: حل في مجموعة الأعداد المركبة المعادلة ذات المجهول z حيث (1
 - : نعتبر في المستوي المركب $\left(O\,; \overrightarrow{U}\,; \overrightarrow{V}\,
 ight)$ النقط B , A و المركب (2

$$z_{D} = 6$$
 , $z_{C} = 2\sqrt{3}i$, $z_{B} = \overline{z_{A}}$, $z_{A} = 3 + \sqrt{3}i$

. على الشكل الأسي الحبة $^{Z}_{C}$ و $^{Z}_{B}$, $^{Z}_{A}$ على الشكل الأسي أ-

$$\left(rac{Z_A}{Z_B}
ight)^{1441}$$
 ب- عين قيم العدد الطبيعي n بحيث يكون : $\left(rac{Z_A}{Z_B}
ight)^n=rac{Z_C}{Z_A}$

- : نعتبر التحويل النقطي f الذي يرفق بكل نقطة M ذات اللاحقة z النقطة M ذات اللاحقة $z'=2z-2\sqrt{3}\,i$
 - أ- عين طبيعة التحويل f محددا عناصره الميزة .
 - . ب- خقق أن صورة النقطة A بالتحويل f هي النقطة D ثم بين أن الرباعي OADB هو معين

.
$$A\,rg\left(\overline{z}-z_{\,B}\right)=rac{\pi}{2}$$
 عين ثم أنشى $\left(E_{\,B}
ight)$ مجموعة النقط $M_{\,B}$ ذات اللاحقة و التي خقق و (4

صفحة 1 من 2

التمرين الثالث: 04 نقاط

. $u_{n+1}=2-\left(2-u_n
ight)^2$ ، u_n و من أجل كل عدد طبيعي $u_n=rac{5}{3}$. المعرفة ب

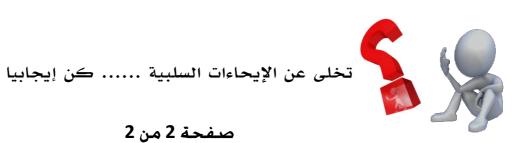
- . $1 < u_n < 2$: برهن بالتراجع أنه من أجل كل عدد طبيعى n فإن (1
- ر البت أن المتتالية (u_n) متزايدة تماما على $\mathbb N$. استنتج أنها تقاربها . (2
- . $v_n = ln\left(2-u_n
 ight)$: لتكن المتتالية $\left(v_n
 ight)$ المعرفة من أجل كل عدد طبيعي (v_n
 - . بين أن $\left(v_{n}
 ight)$ متتالية هندسية أساسها q=2 يطلب حساب حدها الأول -
 - . $\lim_{n\to+\infty}u_n$ بدلالة u_n أحسب عبارة u_n أحسب عبارة v_n أحسب أكتب عبارة v_n
- . $P_n = (2 u_0) \times (2 u_1) \times (2 u_2) \times ... \times (2 u_n)$ أحسب P_n بدلالة P_n بدلالة P_n

التمرين الرابع: 07 نقاط

 $g\left(x
ight)$ = $1+\left(x^{2}-1
ight)e^{x}$. بR بالمورفة على g المعرفة على المعرفة على

- 1) أدرس تغيرات الدالة g ثم شكل جدول تغيراتها .
- . heta ,71<lpha<0 ,72 حيث lpha عقبل حلين أحدهما معدوم والآخر a حيث a<0 ,a<0 بين أن المعادلة a<0
 - . g(x) إستنتج إشارة –

 $f\left(x
ight)=x+\left(x-1
ight)^{2}e^{x}$ بـ : \mathbb{R} بـ المعرفة على المعرفة المعرفة على المعر


. $\left\|\overrightarrow{i}\right\|=2cm$ غيث . $\left(o;\overrightarrow{i};\overrightarrow{j}\right)$ وليكن والمتعامد والمتعا

- . أحسب نهايات الدالة f عند حدود مجموعة تعريفها (1
- . $-\infty$ بين أن المستقيم (C_f) ذي المعادلة y=x مقارب مائل للمنحنى (Δ) جوار (2
 - . (Δ) و المستقيم (C_f) و المستقيم أدرس الوضعية النسبية بين المنحنى
 - . f'(x) = g(x) : x أثبت أنه من اجل كل عدد حقيقى (3
 - أ) إستنتج إنجّاه تغير الدالة f ، ثم شكل جدول تغيراتها .
- ب) بين أن المنحنى (C_f) يقبل مماسين متوازيين أحدهما المستقيم المقارب (Δ) . والآخر T يطلب كتابة معادلة له
 - $f\left(lpha
 ight)\simeq 0\,,9$ نأخذ $\left[-\infty;\,2
 ight]$ على الجال $\left[C_{f}
 ight)$ على الجال (4) أرسم المستقيمين (4) و المنحنى
 - . عين قيم الوسيط الحقيقى m جَيث المعادلة : $f\left(x
 ight)=x+m$ تقبل ثلاثة حلول متمايزة مثنى مثنى (5

أستاذ المادة : نوقبة . ن

بالتوفيق والنجاح للجميع في بكالوريـ 2020 ــا

