امتحملن بك بـــــــــالورِيا تــجريب!

على المترشح أن يخختا رأحد الموضوعين الآتيين
الموضوع الأول
< 03.00 多
في ككل حالتمن الحالات الثثلاث الآتيت، أجب بصحيح أو خطأ مع التبرير بدقت
 - العددان المركبان حلي الجملت (S) ، هما: ، $A=\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{1444}+\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{2023}$ (2)
[01.00]

- العدد A حقيقي

- الدائرة ذات المركز A ونصف القطر 1
[01.00]
< التمريـن الثاني:
$u_{n+1}=\frac{2 u_{n}}{2 u_{n}+5}:$ بعتبر المتتاليت برهن بالتراجع أنه من أجل كل عدد طبيعي n لدينا : 0 با (2 ادرس اتجاه تغير (un) ، ثهرّ استنتج أنها متقاربت

$F_{3} 9 F_{2}$, F_{1} \& 3 g و H_{4} و H_{3} ، H_{2}, H_{1}
(1) احسب احتمال كل من الحوادث التاليخت,

اA : "كل أعضاء الفرقتَ رجال"
B، "الشرقت تضضر على الأكثر امرأة"
H1 هو المسعف في هذه الشرقت" "
P(B C) بيتن أن

3 نعتبر المتغير العشواني الداي يرفق بكل فرقتّ بعث عدد الرجال هيها

ب/ احسب احتمال الحدث " "
ج/ ج/احسب
101.001
100.50|
100.50|

4

(I) نعتبر الدال二
© ادرس تغيرات الدالة g على المجال [
(2) بيتن أن المعادلخ

$$
\text { (احسب } 0
$$

 (3)

$$
G(x)=\int_{1}^{x} g(t) d t \text { بـ الدالتَ العدديت الدعرهت على [} G \text { G } 0 \text { (III }
$$

$$
\text {]0; }+\infty\left[\text { [لمجال } h: x \mapsto x^{2} \ln x\right.
$$

$$
\text { (2) عيتن عبارة } G(x)
$$

$$
\text { والعستتقيمان الذان معدلتاهعا } x=1 \text { و }
$$

الموضوع الثاني

مرقمتمن 1 إلى 5.
(I
A: "الحصول على ثلاث كرات مختلفتّ اللون"
B: "الحصول على كـرة حمراء واحدة بالضبط"
C C: "الحصول على كـر الـى سوداء على الأكثر"
(II

1 أنجز شجرة الاحتمالات الموافقت لهذه التجربت

$$
\text { (2) بيّن أنّ احتمال الحصول على كـرة حمراءهو: } P(R)=\frac{5}{7}
$$

$$
3 \text { إذا كانت الكرة المستحوبتسوداء، فما احتمال أن تكون من الصندوق V؟ }
$$

< التمريـن الثاني:
 $z_{B}=\frac{\sqrt{3}}{2}+\frac{1}{2} i g z_{A}=\sqrt{3}+i: z_{B}$ ح حقتاهما على الترتيب! z_{A} و a
 (2 استنتج الطويلت وعمدة للعدد المركب α ، ثـرّ اكتبه على الشكل المثلثي (2) 3 عيّن القيم المضبوطتّلـ 4 بيتن أنّ 4 بيّ
 أ/ بيّن أن النقطتّ B تنتمي إلى (γ الـي
ب/ عيّن الطبيعت والعناصر المميزة للمجموعتح (((

$$
\begin{align*}
& u_{n+1}=\frac{4 u_{n}}{u_{n}+2}: n \text { نعتبر المتتاليت } n \text {) المعرفتّ بـ } u_{0} \text { ومن أجل كل عدد طبيع } \tag{00.75}
\end{align*}
$$

إمسح أو أنقـر رمز الاستتجابت السريعتح لمشاهدة الحل المُفصل

تصصمبح مُتتح لهمتحلن البكالورِّ التعمرِبيبة

保

1 （Г）هي، الدائرة دات الهركز A ونصف القطر 1 （I） صحعيع ا التبريرير
$|2 \bar{z}-2-4 i|=|\sqrt{3}+i| \Rightarrow|2(\bar{z}-1-2 i)|=2$

$$
\begin{aligned}
& \Rightarrow|2||\bar{z}-1-2 i|=2 \\
& \Rightarrow|\bar{z}-1-2 i|=1 \\
& \Rightarrow|z-1+2 i|=1 \\
& \Rightarrow|z-(1-2 i)|=1 \\
& \Rightarrow\left|z-z_{A}\right|=1 \\
& \Rightarrow A M=1
\end{aligned}
$$

> [م1م] التمريـن الثاني: هめ05.00ه

برهان بالتراجي أنه من أجل كل عده طبيعي

$$
\begin{gathered}
\prime u_{n}>0 \text { 'لدينا } \\
P(n): u_{n}>0
\end{gathered}
$$

لدينا، •

$$
\begin{aligned}
u_{n+1} & =\frac{2 u_{n}}{2 u_{n}+5} \\
& =\frac{2 u_{n}+5-5}{2 u_{n}+5} \\
& =\frac{2 u_{n}+5}{2 u_{n}+5}-\frac{5}{2 u_{n}+5} \\
& =1-\frac{5}{2 u_{n}+5} \\
u_{n}>0 & \Rightarrow 2 u_{n}+5>5 \\
& \Rightarrow \frac{1}{2 u_{n}+5}<\frac{1}{5} \\
& \Rightarrow-\frac{5}{2 u_{n}+5}>-1 \\
& \Rightarrow 1-\frac{5}{2 u_{n}+5}>0 \\
& \Rightarrow u_{n+1}>0
\end{aligned}
$$

بجهع (*) و (**) طرضا لطرض

$$
\text { نجد: } 4 z_{1}=-6+2 \sqrt{3} i
$$

وعنه:

$$
z_{1}=-\frac{3}{2}+\frac{\sqrt{3}}{2} i
$$

$$
\text { بتعويض قيمت }{ }^{2} \text { في (*) نجد. }
$$

：لدينا، $\begin{aligned} A & =\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{1444}+\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{2023} \\ & =\left(e^{\frac{\pi}{3} i}\right)^{1444}+\left(e^{\frac{2 \pi}{3} i}\right)^{2023}=e^{1444 \times \frac{\pi}{3} i}+e^{2023 \times \frac{2 \pi}{3}}\end{aligned}$

$$
=e^{\left(481 \pi+\frac{\pi}{3}\right) t}+e^{\left(1349 \pi-\frac{\pi}{3}\right) t}=e^{\left(\pi+\frac{\pi}{3}\right) t}+e^{\left(\pi-\frac{\pi}{3}\right) t}
$$

$$
=\cos \left(\pi+\frac{\pi}{3}\right)+i \sin \left(\pi+\frac{\pi}{3}\right)+\cos \left(\pi-\frac{\pi}{3}\right)
$$

$$
+i \sin \left(\pi-\frac{\pi}{3}\right)
$$

$$
=-\frac{1}{2}-i \frac{\sqrt{3}}{2}-\frac{1}{2}+i \frac{\sqrt{3}}{2}=-1
$$

$$
\text { , } \lim _{n \rightarrow+\infty}\left(u_{n}\right) \text { ايج̣اد }
$$

$$
0<u_{n}<\frac{3}{2}\left(\frac{2}{5}\right)^{n}
$$

$$
\Rightarrow 0<\lim _{n \rightarrow+\infty} u_{n}<\lim _{n \rightarrow+\infty}\left(\frac{3}{2}\left(\frac{2}{5}\right)^{n}\right)
$$

$$
\Rightarrow 0<\lim _{n \rightarrow+\infty} u_{n}<0
$$

$$
\Rightarrow \lim _{n \rightarrow+\infty} u_{n}=0
$$

ا/ تبيينأن

$$
\begin{aligned}
v_{n+1} & =\frac{4 u_{n+1}}{2 u_{n+1}+3} \\
& =\frac{4 \frac{2 u_{n}}{2 u_{n}+5}}{2 \frac{2 u_{n}}{2 u_{n}+5}+3} \\
& =\frac{8 u_{n}}{10 u_{n}+15} \\
& =\frac{2\left(4 u_{n}\right)}{5\left(2 u_{n}+3\right)}=\frac{2}{5} v_{n}
\end{aligned}
$$

$$
\text { ب/ كتابتيدצلت n عبارة } n \text { و و }
$$

$$
v_{n}=\left(\frac{2}{5}\right)^{n} \text {, } v_{0}=1 \text { وniينا }
$$

$$
v_{n}=\frac{4 u_{n}}{2 u_{n}+3}: \text { ولدينا }
$$

$$
v_{n}=\frac{4 u_{n}+6-6}{2 u_{n}+3}: \text { هig }
$$

$$
v_{n}=\frac{4 u_{n}+6}{2 u_{n}+3}-\frac{6}{2 u_{n}+3}: \text { diag }
$$

$$
v_{n}=2-\frac{6}{2 u_{n}+3}: \text { dieg }
$$

$$
2-v_{n}=\frac{6}{2 u_{n}+3}: \text { وعنه }
$$

$$
\frac{2-v_{n}}{6}=\frac{1}{2 u_{n}+3}: \text { बiag }
$$

$$
\frac{6}{2-v_{n}}=2 u_{n}+3: \text { gig }
$$

$$
\frac{3}{2-v_{n}}-\frac{3}{2}=u_{n}: \text { dieg }
$$

$$
\frac{3 v_{n}}{2\left(2-v_{n}\right)}=u_{n}: \text { dig }
$$

$$
u_{n}=\frac{3\left(\frac{2}{5}\right)^{n}}{2\left(2-\left(\frac{2}{5}\right)^{n}\right)}: \text { diag }
$$

$$
\text { ج/ حساب }{ }_{\text {ج }}^{\text {بطريقتجتأخرىت }}
$$

 استنتاج أنها هتقاريتا
 0، فهي متقاريت (3)
. $0<u_{n+1}<\frac{2}{5} u_{n}$ $u_{n}>0 \Rightarrow 2 u_{n}+5>5$

$$
\Rightarrow 0<\frac{1}{2 u_{n}+5}<\frac{1}{5}
$$

$$
\Rightarrow 0<\frac{2 u_{n}}{2 u_{n}+5}<\frac{2}{5} u_{n}
$$

$$
\Rightarrow 0<u_{n+1}<\frac{2}{5} u_{n}
$$

$$
\text { ب| استتنتاج انن } 0<u_{n}<\frac{3}{2}\left(\frac{2}{5}\right)^{n}
$$

لدينا:

$$
\left\{\begin{array}{c}
0<u_{1}<\frac{2}{5} u_{0} \\
0<u_{2}<\frac{2}{5} u_{1} \\
\vdots \\
0<u_{n-1}<\frac{2}{5} u_{n-2} \\
0<u_{n}<\frac{2}{5} u_{n-1}
\end{array}\right.
$$

بضرب أطراف الهتراجحات طرها 'لطرف نجدن .

$$
0<u_{1} \times u_{2} \times \ldots \times u_{n-1} \times u_{n}
$$

$$
<\frac{2}{5} u_{0} \times \frac{2}{5} u_{1} \times \ldots \times \frac{2}{5} u_{n-2} \times \frac{2}{5} u_{n-1}
$$

$$
0<u_{n}<\frac{2}{5} u_{0} \times \frac{2}{5} \times \ldots \times \frac{2}{5} \times \frac{2}{5}: \text { ging }
$$

$$
0<u_{n}<u_{0}\left(\frac{2}{5}\right)^{n}: \operatorname{din}
$$

$$
\begin{aligned}
& u_{n+1}-u_{n}=\frac{2 u_{n}}{2 u_{n}+5}-u_{n} \\
& =\frac{2 u_{n}-2\left(u_{n}\right)^{2}-5 u_{n}}{2 u_{n}+5} \\
& =-\frac{u_{n}\left(2 u_{n}+3\right)}{2 u_{n}+5} \\
& u_{n}>0 \text { : } \\
& \left\{\begin{array}{l}
2 u_{n}+3>0 \\
2 u_{n}+5>0
\end{array}\right. \text { udiag } \\
& u_{n+1}-u_{n}<0 \text { idig }
\end{aligned}
$$

$P\left(|X|<X^{2}\right)=P(X=2)+P(X=3)=\frac{22}{35}$

$$
\mathrm{E}(X)=\sum_{i=1}^{4} x_{i} P\left(x_{i}\right)=\frac{12}{7}
$$

[م1م] التمريـن الرابع: (\$07.75)
 - نهايات الدالت

- $\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty}\left[x^{2}\left(\frac{1}{x^{2}}+1-2 \ln x\right)\right]=-\infty$ - $\lim _{x \rightarrow 0} g(x)=1$

$$
g^{\prime}(x) \text { إشارة • }
$$

لدينا الدالة و قابلت للاشتقاق ودالتها المشتقتّهي'
$g^{\prime}(x)=2 x-4 x \ln x-\frac{2 x^{2}}{x}=-4 x \ln x$
]0;+
$x=1$ ولدينا,

: تبيين أن المعادلتَ
لدينا, الدالة g مستمروو ورتيبت على] $11 ;+\infty$ $g(1.9) \times g(1.8)<0$, ولديناء
 تقبل حلا وحيدا α حيث 1.9 > \gg 1.8 ق

x	0	α	$+\infty$
$g(x)$	+	0	-

(1) وتساب

هندسياء

- $\lim _{x \rightarrow 0} f(x)=-\infty$
$\lim _{n \rightarrow+\infty} u_{n}=\lim _{n \rightarrow+\infty}\left(\frac{3\left(\frac{2}{5}\right)^{n}}{2\left(2-\left(\frac{2}{5}\right)^{n}\right)}\right)=\frac{3 \times 0}{2(2-0)}=0$

$$
S_{n}=\frac{6}{2 u_{0}+3}+\frac{6}{2 u_{1}+3}+\cdots+\frac{6}{2 u_{n}+3}
$$

$$
=2-v_{0}+2-v_{1}+\cdots+2-v_{n}
$$

$$
=2(n+1)-\left(v_{0}+v_{1}+\cdots+v_{n}\right)
$$

$$
=2(n+1)-\frac{1-\left(\frac{2}{5}\right)^{n+1}}{1-\frac{2}{5}}
$$

$$
=2(n+1)-\frac{5}{3}\left(1-\left(\frac{2}{5}\right)^{n+1}\right)
$$

نختار33أعضاء من بين 4 رجال و3 نساء، أي من بين 7 أشخاص، وعليه، عدد الفرق التي يهكن تشكـيلها هو

$$
A_{7}^{3}=210
$$

$$
0 \text { حساب احتمالات الأحداث| }
$$

- $P(A)=\frac{A_{4}^{3}}{A_{7}^{3}}=\frac{24}{210}=\frac{4}{35}$
- $P(B)=\frac{A_{4}^{3}+3 A_{3}^{1} A_{4}^{2}}{A_{7}^{3}}=\frac{96}{210}=\frac{22}{35}$
- $P(C)=\frac{A_{1}^{1} A_{6}^{2}}{A_{7}^{3}}=\frac{30}{210}=\frac{1}{7}$

$$
\text { © تبيين أنّ } P(B \cap C)=\frac{1}{}
$$

- $P(B \cap C)=\frac{A_{1}^{1} A_{4}^{2}+2 A_{1}^{1} A_{3}^{1} A_{3}^{1}}{A_{7}^{3}}=\frac{30}{210}=\frac{1}{7}$
 لدينا: حيثر
- $P(X=0)=\frac{A_{3}^{3}}{A_{7}^{3}}=\frac{6}{210}=\frac{1}{35}$
- $P(X=1)=\frac{3 A_{4}^{1} A_{3}^{2}}{A_{7}^{3}}=\frac{72}{210}=\frac{12}{35}$
- $P(X=2)=\frac{3 A_{4}^{2} A_{3}^{1}}{A_{7}^{3}}=\frac{108}{210}=\frac{18}{35}$
- $P(X=3)=P(A)=\frac{24}{210}=\frac{4}{35}$

x_{i}	0	1	2	3
$P\left(X=X_{i}\right)$	$\frac{1}{35}$	$\frac{12}{35}$	$\frac{18}{35}$	$\frac{4}{35}$

ب/ حساباحتهال الحدث| "

تبيين أن الدالت H دالتح أصليتة للدالتّ h
$H(x)=\int h(x) d x=\int x^{2} \ln x d x$

$$
\begin{array}{|l|l}
u^{\prime}(x)=\frac{1}{x} & \text { ing } \\
v(x)=\frac{1}{3} x^{3} & u(x)=\ln x \\
v^{\prime}(x)=x^{2}
\end{array}
$$

وعليه1

$$
\begin{aligned}
H(x) & =\int_{1} x^{2} \ln x d x=\frac{1}{3} x^{3} \ln x-\int \frac{1}{x} \frac{1}{3} x^{3} d x \\
= & \frac{1}{3} x^{3} \ln x-\frac{1}{3} \int x^{2} d x \\
= & \frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+c=\frac{1}{3} x^{3}\left(\ln x-\frac{1}{3}\right)+c \\
& =\int_{1}^{G(x)}= \\
& =\int_{1}^{x} g(t) d t \\
& =\left[t+\frac{1}{3} t^{3}-2 H(t)\right]_{1}^{x}\left(1+t^{2}-2 t^{2} \ln t\right) d t \\
& =x+\frac{1}{3} x^{3}-2 H(x)-1-\frac{1}{3}+2 H(1) \\
& =x+\frac{1}{3} x^{3}\left(\frac{1}{3}-2 \ln x\right)-\frac{14}{9} \\
& =A_{\alpha}^{x} h(t) d t \\
&
\end{aligned}
$$

$$
A_{\alpha}=\int_{1}^{a} g(x) d x=[G(x)]_{1}^{\alpha}
$$

$$
=\left(\alpha+\frac{1}{3} \alpha^{3}\left(\frac{1}{3}-2 \ln \alpha\right)-\frac{10}{9}\right) u \cdot a
$$

$$
=\left(\alpha+\frac{1}{3} \alpha^{3}\left(\frac{1}{3}-2 \ln \alpha\right)-\frac{10}{9}\right) \times(3 \times 1) \mathrm{cm}^{2}
$$

$$
=\left(3 \alpha+\alpha^{3}\left(\frac{1}{3}-2 \ln \alpha\right)-\frac{10}{3}\right) \mathrm{cm}^{2}
$$

- $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(\frac{\frac{\ln x}{x^{2}}}{1+\frac{1}{x^{2}}}\right)=0$

$$
\lim _{x \rightarrow+\infty}\left(\frac{\ln x}{x^{2}}\right)=0 \dot{y}
$$

وهنه,
$y=0$ • 0 *
$x=0$ 0 0
(2)

$$
\text { f } f^{\prime}(x)=\frac{g(x)}{x\left(x^{2}+1\right)^{2}}
$$

$f^{\prime}(x)=\frac{\frac{1}{x}\left(x^{2}+1\right)-2 x \ln x}{\left(x^{2}+1\right)^{2}}$
$=\frac{\frac{x^{2}+1-2 x^{2} \ln x}{x}}{\left(x^{2}+1\right)^{2}}$
$=\frac{x^{2}+1-2 x^{2} \ln x}{x\left(x^{2}+1\right)^{2}}=\frac{g(x)}{x\left(x^{2}+1\right)^{2}}$
ب/ استنتاج اتتجاد تغير الدالخت f على إم+ وتشكيل جلدول تفيراتها
لديناء $x\left(x^{2}+1\right)^{2}>0$ على الهجال [

x	0	α	$+\infty$
$f^{\prime}(x)$	+	0	-
$f(x)$		$f(\alpha)$	
	$-\infty$		\wedge_{0}

${ }^{2} f(\alpha)=\frac{1}{2 \alpha^{2}}{ }^{2}$ i 3

$$
g(\alpha)=0 \text { لدينا: }
$$

$1+\alpha^{2}-2 \alpha^{2} \ln (\alpha)=0 \quad$ ونهـ,
و وعia
 لدينا: $1.8<\alpha<1.9$

$$
2(1.8)^{2}<2 \alpha^{2}<2(1.9)^{2} \quad \text { ومنه }
$$

$$
\begin{array}{r}
\frac{1}{2(1.9)^{2}}<\frac{1}{2 \alpha^{2}}<\frac{1}{2(1.8)^{2}} \\
0.13<f(\alpha)<0.15
\end{array}
$$

$$
0.13<f(\alpha)<0.15 \quad \text { ومنه }
$$

$f(x)=0 \Rightarrow \frac{\ln x}{x^{2}+1}=0 \Rightarrow \ln x=0 \Rightarrow x=1$
(Cf)
(C_{f} (

$u_{n+1}=\frac{4 u_{n}}{u_{n}+2}=\frac{4 u_{n}+8-8}{u_{n}+2}=\frac{4 u_{n}+8}{u_{n}+2}-\frac{8}{u_{n}+2}$ $=4-\frac{8}{u_{n}+2}$

P(n): $2<u_{n} \leq 4$ تضع $2<4 \leq 4$ idin $2<u_{0} \leq 4$, لدينا !ذ $n \in \mathbb{N}$; نفرض صتحت P(n) ونثبت صحتح (1)

$$
\text { -لدينا : } 2<4 \leq u_{n} \text {. }
$$

$$
4<u_{n}+2 \leq 6: \text { ونته }
$$

$$
\frac{1}{6} \leq \frac{1}{u_{n}+2}<\frac{1}{4}: \text { ومنه }
$$

$$
-2<-\frac{8}{u_{n}+2} \leq-\frac{8}{6}: \text { giv }
$$

$$
2<4-\frac{8}{u_{n}+2} \leq \frac{8}{3}: \text { ding }
$$

$$
2<4-\frac{8}{u_{n}+2} \leq 4: \text { ding }
$$

$$
2<u_{n+1} \leq 4 \text { : gind }
$$

2 دراستخاتجاد تغير (un) .

$$
u_{n+1}-u_{n}=u_{n+1}=\frac{4 u_{n}}{u_{n}+2}-u_{n}
$$

$$
=\frac{4 u_{n}-\left(u_{n}\right)^{2}-2 u_{n}}{u_{n}+2}=\frac{2 u_{n}-\left(u_{n}\right)^{2}}{u_{n}+2}
$$

$$
=\frac{u_{n}\left(2-u_{n}\right)}{u_{n}+2}
$$

$$
\left\{\begin{array}{c}
u_{n}>0 \\
2-u_{n}<0 \\
u_{n}+2>0
\end{array}\right.
$$

لدينا, $2<u_{n} \leq 4$ ونهن
! !

$$
\begin{aligned}
v_{n+1} & =\ln \left(\frac{u_{n+1}}{u_{n+1}-2}\right)=\ln \left(\frac{\frac{4 u_{n}}{u_{n}+2}}{\frac{4 u_{n}}{u_{n}+2}-2}\right) \\
& =\ln \left(\frac{4 u_{n}}{2 u_{n}-4}\right)=\ln \left(\frac{4}{2} \times \frac{u_{n}}{u_{n}-2}\right) \\
& =\ln (2)+\ln \left(\frac{u_{n}}{u_{n}-2}\right) \\
& =\ln (2)+v_{n}
\end{aligned}
$$

إذن (v_{n} حسابيتَأساسها (2) وحلدها الأول \ln (2 حيثر

$$
v_{0}=\ln \left(\frac{u_{0}}{u_{0}-2}\right)=\ln (2)
$$

ب/ كتابت

تصحيع متترح للبكالوريا التجريبية | شعبة علوم تجوريية|

$$
\beta=e^{i \frac{\pi}{6}}=\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)
$$

$$
\left\{\begin{array}{l}
x=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \\
y=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}
\end{array}\right.
$$

$$
\text { نضی، } \beta=x+i y \text { gidid }
$$

$$
\beta=\frac{\sqrt{3}}{2}+\frac{1}{2} i \quad \dot{j} \leq
$$

(6)

 لدينا،

$$
\begin{aligned}
\left|z_{B}-\sqrt{3}-i\right| & =\left|\frac{\sqrt{3}}{2}+\frac{1}{2} i-\sqrt{3}-i\right|=\left|-\frac{\sqrt{3}}{2}-\frac{1}{2} i\right| \\
& =\sqrt{\left(-\frac{\sqrt{3}}{2}\right)^{2}+\left(-\frac{1}{2}\right)^{2}}=1
\end{aligned}
$$

$$
\text { إذن } B \in(\gamma)
$$

ب/ تعيين الطبيعت والعناصر المهيزة للصجموعت (Y) لدينا،

$$
\begin{aligned}
|z-\sqrt{3}-i|=1 & \Rightarrow|z-(\sqrt{3}+i)|=1 \\
& \Rightarrow\left|z-z_{A}\right|=1 \\
& \Rightarrow A M=1
\end{aligned}
$$

لدينا

$$
\begin{aligned}
& \beta=\frac{\alpha}{2(1+i)}=\frac{2 \sqrt{2} e^{i \frac{5 \pi}{12}}}{2 \sqrt{2} e^{i \frac{\pi}{4}}}=e^{i\left(\frac{5 \pi}{12}-\frac{\pi}{4}\right)}=e^{i \frac{\pi}{6}} \\
& \text { • }
\end{aligned}
$$

$$
\begin{aligned}
& \{|1+i|=\sqrt{2} \\
& \left\{\arg (1+i)=\frac{\pi}{4}+2 k \pi{ }^{\text {t لدينا: }}\right. \\
& 1+\mathrm{i}=\sqrt{2} e^{i \frac{\pi}{4}} \text {, ونه } \\
& \alpha=2 \sqrt{2}\left(\cos \left(\frac{5 \pi}{12}\right)+i \sin \left(\frac{5 \pi}{12}\right)\right) \text { ولدينا } \\
& \alpha=2 \sqrt{2} e^{\frac{5 \pi}{12}} \text {, }
\end{aligned}
$$

$g(-1)=1-e^{-1} \approx 0.63>0$ لدينا,
 $g(x)>0 \quad$! (1) حساب ثهايات الدالد

- $\lim _{x \rightarrow-\infty} f(x)=+\infty$
- $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left[\frac{e^{x}\left(1+\frac{x}{e^{x}}\right)}{e^{x}\left(1-\frac{1}{e^{x}}\right)}\right]=\lim _{x \rightarrow+\infty}\left(\frac{1+\frac{x}{e^{x}}}{1-\frac{1}{e^{x}}}\right)=1$

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=0 \text { yانز }
$$

$$
\begin{aligned}
& \text { - } \lim _{x \rightarrow 0} f(x)=-\infty \quad \text { - } \lim _{x \rightarrow 0} f(x)=+\infty \\
& \text { التفسير الهندسي' }
\end{aligned}
$$

$x=0$ 0 0 $y=1$ •

$$
f^{\prime}(x)=-\frac{g(x)}{\left(e^{x}-1\right)^{2}} \text { نبيين إن }
$$

$f^{\prime}(x)=\frac{\left(e^{x}+1\right)\left(e^{x}-1\right)-e^{x}\left(e^{x}+x\right)}{\left(e^{x}-1\right)^{2}}$

$$
=\frac{-1-x e^{x}}{\left(e^{x}-1\right)^{2}}=-\frac{g(x)}{\left(e^{x}-1\right)^{2}}
$$

ب/ استنتتا ج اتجاه تغير f وتششكيل

x	$-\infty$	$+\infty$
$f^{\prime}(x)$	-	-
$f(x)$		${ }_{4}^{+\infty}$

3 تبيينز أن) فاصلتها α حيثر 0.5 0.6 0 <

$$
\begin{gathered}
\left\{\begin{array}{l}
f(-0.6) \approx 0.11 \\
f(-0.5) \\
f(-0.6) \times-0.27
\end{array}\right. \\
\text { ولدين } f(-0.5)<0 .
\end{gathered}
$$

لدينـا,

$$
S_{n}=e^{v_{0}}+e^{v_{1}}+\cdots+e^{v_{n}}
$$

$$
=2^{0+1}+2^{1+1}+\cdots+2^{n+1}
$$

$$
=2\left(2^{0}+2^{1}+\cdots+2^{n}\right)
$$

$$
=2\left(\frac{2^{n+1}-1}{2-1}\right)
$$

$$
=2\left(2^{n+1}-1\right)
$$

$$
P_{n}=\left(u_{0}+2\right)\left(u_{1}+2\right) \times \ldots \times\left(u_{n}+2\right) g
$$

-

- $\lim _{x \rightarrow+\infty} g(x)=+\infty$
- $\lim _{x \rightarrow-\infty} g(x)=1$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} x e^{x}=0 \text { y } \\
& g^{\prime}(x) \text { ! }!\text {. }
\end{aligned}
$$

 $g^{\prime}(x)=e^{x}+x e^{x}=e^{x}(1+x)$

$$
\text { لدينا: } e^{x}>0
$$

$$
\begin{aligned}
& v_{n}=\ln (2)+n \ln (2)=(n+1) \ln 2=\ln 2^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& v_{n}=\ln \left(\frac{u_{n}}{u_{n}-2}\right): ل د ي ن ا \\
& e^{v_{n}}=\frac{u_{n}}{u_{n}-2}: \text { givis } \\
& u_{n} e^{v_{n}}-2 e^{v_{n}}-u_{n}=0: \text { : } \\
& u_{n}\left(e^{v_{n}}-1\right)=2 e^{v_{n}}: \text { ding } \\
& u_{n}=\frac{2 e^{v_{n}}}{e^{V_{n}}-1}: \text { ding } \\
& u_{n}=\frac{2 \times 2^{n+1}}{2^{n+1}-1}: ब \text { ing } \\
& u_{n}=\frac{2 \times 2^{n+1}}{2^{n+1}-1} \times \frac{2^{-n-1}}{2^{-n-1}}: \text { sing } \\
& u_{n}=\frac{2}{1-2^{-n-1}}=\frac{2}{1-\left(\frac{1}{2}\right)^{n+1}}: \text { ding } \\
& \text { جا } \lim _{n \rightarrow+\infty}\left(u_{n}\right) \text { حساب } \\
& \lim _{n \rightarrow+\infty} u_{n}=\lim _{n \rightarrow+\infty}\left(\frac{2}{1-\left(\frac{1}{2}\right)^{n+1}}\right)=\frac{2}{1-0}=2 \\
& \lim _{n \rightarrow+\infty}\left(\left(\frac{1}{2}\right)^{n+1}\right)=0 \text { jy }
\end{aligned}
$$

إذن قيـر الوسيط m حتى المعادلت $m+f(x)=0$ حلين مختلفين في الإشارة، $m \in]-\infty ;-1[$ أي لما $(-m) \in] 1 ;+\infty[$ هي

$$
\text { تبيين أنّ - } 1 \text { h(x)=f(-x): }
$$

$$
h(x)=f(-x)-1=\frac{e^{-x}-x}{e^{-x}-1}-1
$$

$$
\begin{aligned}
& =\frac{e^{-x}-x-e^{-x}+1}{e^{-x}-1}=\frac{1-x}{e^{-x}-1} \\
& =\frac{x-1}{1-e^{-x}}=h(x)
\end{aligned}
$$

(2) شرح كيف يمكن إنشاء (C) إنطلاقا من (${ }^{2}$)

$$
\begin{array}{r}
f(-x)=k(x) \\
h(x)=f(-x)-1 \\
\text { ومنـه: } \\
\text { وعناه: }
\end{array}
$$

(Cf) بالنسبت لوحور التراتيب
 $\vec{u}\binom{0}{-1}$

بالتوفيق في شهادة البكالوريا

ه 0

ومنه حسب مبرهنتـ القيـو المتوسطت 0 = 0 تقبل حلا $\alpha \in]-0.6 ;-0.5$ وحيدا α حيث 4 أ/ تبيين أن (D) مُقارب مائل لـ $\left(C_{f}\right)$ بـجوار لدينا:
ب/ دراست الوضع النسببي بين (Cf) و (D):

$$
f(x)-(-x)=\frac{e^{x}+x e^{x}}{e^{x}-1}=\frac{e^{x}(x+1)}{e^{x}-1}
$$

$$
\text { لدينا: } 0 \text { ex } 0
$$

$$
\text { ولدينـا: } 0=-1 \text { معناه } \quad x+1=0
$$

$$
\text { ولدينا: } x \neq 0 \text { معناه: } \quad e^{x}-1 \neq 0
$$

x	$-\infty$	-1	0	$+\infty$
$x+1$	-	0	+	+
$e^{x}-1$	-		-	+
$f(x)-(-x)$	+	0	-	+
النسبي	$\left(C_{f}\right)$ فوق (D)	$\begin{gathered} \left(C_{f}\right) \\ \text { يقطع }(D) \\ A(-1 ; 1) \end{gathered}$	$\left(C_{f}\right)$ تح (D)	$\begin{gathered} \left(C_{f}\right) \\ \text { فوق (D) } \end{gathered}$

6 تعيين قيـر الوسيط الحقيقي حتى تقبل المعادلت $m+f(x)=0$ $f(x)=-m$ لـدينا: $\quad m+f(x)=0$ حلول المعادلت هي فواصل نقط تقاطع (C) مع $y=-m$ المستقيمات ذات المعادلات

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}[f(x)-(-x)]=\lim _{x \rightarrow-\infty}\left[\frac{e^{x}+x}{e^{x}-1}+x\right] \\
& =\lim _{x \rightarrow-\infty}\left[\frac{e^{x}+x+x e^{x}-x}{e^{x}-1}\right] \\
& =\lim _{x \rightarrow-\infty}\left[\frac{e^{x}+x e^{x}}{e^{x}-1}\right]=\frac{0}{-1}=0 \\
& \text { إذن:(D) مُقارب مائل لـ (C }) \text {) بـجوار م- }
\end{aligned}
$$

