الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية اول نوفمبر - قالمة -

دورة: ما*ي* 2017

امتحان بكالوريا تجريبي للتعليم الثانوي

الشعبة: رياضيات + تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة: العلوم الفيزيائية

وزارة التربية الوطنية

على المترشح أن يختار أحد الموضوعين التالبين:

الموضوع الأول

الجزء الأول (الفيزياء): 14 نقطة

التمرين الأول: (4 نقاط)

تعتبر الدارة RC من بين الدارات الكهربائية المستعملة في التركيب الإلكتروني لمجموعة من الأجهزة الكهربائية.

ندرس في هذا الجزء ثنائي القطب RC.

يتكون التركيب التجريبي الممثل في الشكل - 1 -:

- مولد مثالي قوته المحركة الكهربائي E .
 - . $C_2 = 2\mu F$ ، C_1 مكثفتين سعتاهما
 - . $R=3k\Omega$ ناقل أومى مقاومته
 - قاطعة

. t=0 نغلق القاطعة عند اللحظة

.
$$C_{eq} = \frac{C_1 \times C_2}{C_1 + C_2}$$
 : بين أن عبارة السعة C_{eq} للمكثفة المكافئة لتجميع المكثفتين علي التسلسل هو C_{eq} المكثفة المكافئة الم

 $u_{2}\left(t
ight)$ بين أن المعادلة التفاضلية التي يحققها التوتر -2

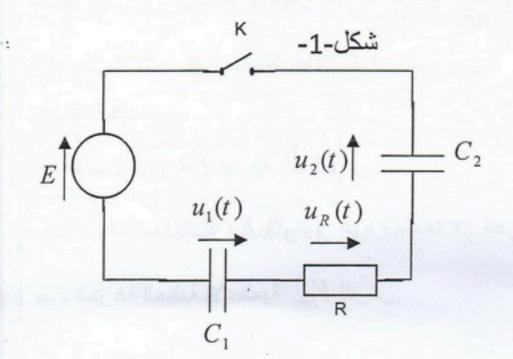
بين طرفي المكثفة التي سعتها C_2 تكتب:

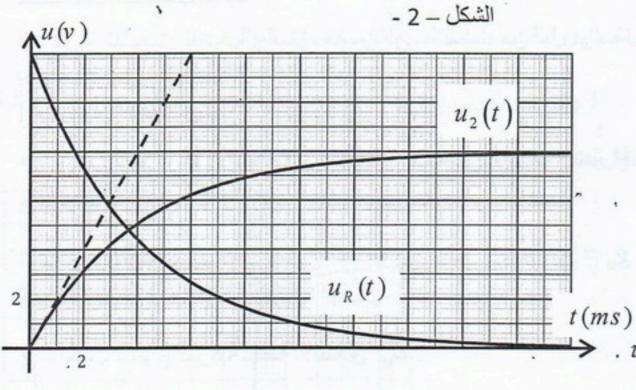
$$. \frac{du_2(t)}{dt} + \frac{1}{RC_{eq}}.u_2(t) = \frac{E}{RC_2}$$

3 - يعطى حل المعادلة التفاضلية

.
$$u_2(t) = A(1-e^{-\alpha t})$$
 على الشكل:

أعط عبارة كل من α ، α بدلالة ثوابت الدارة .


 $u_{R}(t); u_{2}(t)$ يمثل منحنيا الشكل -2 – تطور التوترين -4


أ - حدد قيمة E ثم قيمة كل من $u_R(t); u_2(t)$ في النظام الدائم.

. $C_1 = 4\mu F$ بين أن $-4\mu F$

التمرين الثاني : (04 نقاط): الدراسة الطاقوية لنواس بسيط

يتكون نواس بسيط من كرية كتلتها m وأبعادها مهملة، معلقة بطرف خيط غير قابل للامتطاط كتلنه مهملة

وطوله 1. الطرف الأخر للخيط مثبت الى النقطة 1 ثابت الم

نزيح النواس عن موضع توازنه المستقر بزاوية θ_0 ثم نحرره بدون سرعة ابتدائية عند اللحظة t=0 ، فينجز اهتزازات حرة في المستوي الشاقولي حول محور ثابت Δ أفقي يمر من النقطة Δ .

" ندرس حركة النواس في مرجع أرضي نعتبره غاليليا

ونعين موضع النواس في لحظة t بالفاصلة الزاوية θ . (الشكل – 1 -)

نختار المستوي الأفقي المار من النقطة ٥ ، موضع التوازن المستقر للنواس،

مرجعا للطاقة الكامنة الثقالية.

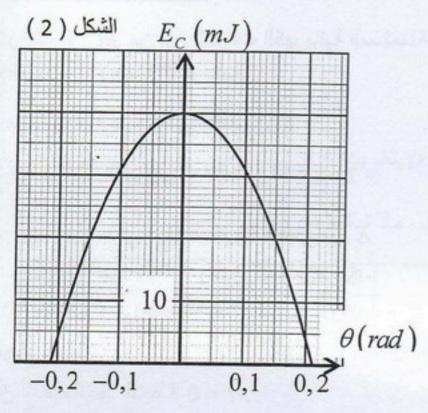
نهمل جميع الاحتكاكات وندرس حركة النواس في حالة الاهتزازات صغيرة السعه

المعطيات:

. (
$$\cos\theta = 1 - \frac{\theta^2}{2}$$
 و $\sin\theta = \theta$ و بالنسبة للزوايا الصغيرة $g_0 = 9,8m/S^2$, $L = 58cm$ ؛ طول الخيط $m = 350g$ و كتلة الكرية و $m = 350g$ عتلة الكرية و منافع الخيط و منافع الخيط

مند اللحظة t عبارة الطاقة الميكانيكية E_m لحركة النواس البسيط في حالة الاهتزازات الصغيرة -1

. $\theta^{\bullet} = \frac{d\theta}{dt}$ بدلالة m , g , L , θ بدلالة m , g , L , θ


2 - يمثل الشكل - 2 - مخطط الطاقة للنواس المدروس.

حدد قيمة كل من:

أ – الفاصلة الزاوية الاعظمية θ_0 للنواس.

. ب - الطاقة الميكانيكية E_m للنواس.

ج - السرعة الحظية الاعظمية $V_{
m max}$ للنواس.

(1) الشكل (1)

 θ_2 اللذين تكون فيهما الطاقة الكامنة الثقالية تساوي الطاقة الحركية. θ_2 اللذين تكون فيهما الطاقة الكامنة الثقالية تساوي الطاقة الحركية.

التمرين الثالث: (6 نقاط)

قرر مركز للأبحاث الفضائية إرسال بعثة من الرواد للفضاء من أجل دراسة بيئية للغلاف الجوي للأرض در اسة بعض مراحل البعثة:

ا - مرحلة الانطلاق:

عند تشغيل المحرك يكون الانطلاق رأسيا ونقبل أن اندفاع الغازات المحترقة تكافئ قوة خارجية شدتها $F=32,4\times 10^6 N$ تسمى قوة الدفع، كتلة المركبة $M=2041\times 10^3 kg$

 $g_0 = 9.8 m/s^2$ نهمل قوى الاحتكاك وباعتبار تسارع الجاذبية الأرضية

1 - مثل القوى المطبقة على المركبة الفضائية لحظة الانطلاق.

. a_0 أحسب تسارع المركبة لحظة الانطلاق -2

 $t = 2,5 \, \text{min}$ عند اللحظة عند اللحظة $t = 2,5 \, \text{min}$ وكذلك الارتفاع التي تبلغه باعتبار

أن التسارع يبقى ثابت.

الدوران حول الأرض:

z=300km بعد $10\,\mathrm{min}$ من الإنطلاق تدخل المركبة إلى مدارها الدائري حول الأرض على ارتفاع $m=69,68\times10^3 kg$ وتكون كتلتها $m=69,68\times10^3 kg$. نفرض أن المركبة نقطة مادية والأرض كروية

2

3as.ency-education.com

 $R_T = 6400 km$ الشكل نصف قرها مركبة 1 - مثل على الشكل المقابل شعاع القوة المطبقة على المركبة. 2 - بتطبيق القانون الثاني لنيوتن أوجد عبارة تسارع المركبة بدلالة $, G, M_T, R_T, Z$

 $r = R_T + z$ حيث G , M_T , r اعط عبارة سرعة المركبة بدلالة G , M_T , r

4- تحقق من القانون الثالث لكبلر.

 M_T احسب كتلة الأرض $v_2=7,74km/S$ المركبة هي $v_2=7,74km/S$ $G=6,67\times 10^{-11} m^3.kg^{-1}.s^{-2}$ نعطي ثابت الجذب العام <u> ۱۱۱ – مرحلة النزول:</u>

خلال مرحلة النزول تكون حركة المركبة شاقولية . عند ارتفاع $Z_{
m l}$ تفتح المظلة المرتبطة بالمركبة فتخضع المجموعة الى قوة احتكاك جهتها معاكسة لجهة شعاع السرعة يمكن نمذجتها بـ : $f = k \ v_z^2$ حيث v سرعة المركبة على المحور OZ و k ثابت.

نهمل دافعة ارخميدس و نختار المحور OZ موجه نحو الأعلى و المبدأ عند سطح الأرض.

u المعادلة التفاضلية التي تحققها السرعة u.

2 – تصل سرعة المركبة الى قيمة حدية $v_L = 10 m/S$. احسب قيمة الثابت k و حدد وحدته. نعتبر كتلة المركبة ثابتة و تساوي m .

نعتبره غاليليا $\left(0,\overline{i},\overline{k}\right)$ في معلم $\left(X_{0}=0,Z_{0}=3km\right)$ ذات الاحداثيين M_{0} ذات الاحداثيين M_{0} غاليليا أمركبة الى المركبة الى النقطة والمحداثيين الاحداثيين ($X_{0}=0,Z_{0}=3km$) نعتبره غاليليا

بسرعة $v_L=10$ في الحظة t=0 ينفلت جسم S من المركبة بسرعة $v_L=10$ تصنع زاوية $v_L=10$ مع الشاقول $\cdot (O, \overline{i}, \overline{k})$ المعادلتين الزمنيتين لحركة الجسم في المعلم المعادلتين الزمنيتين الحركة الجسم المعادلتين الزمنيتين الحركة الحسم المعادلتين المعادلتين

ب - أكتب المعادلة الزمنية لحركة المركبة.

ج - أوجد لحظة وصول المركبة الى الأرض.

الجزء الثاني (كيمياء): (6 نقاط) الجزء الأول والثاني مستقلان

الشكل (2) ا - معايرة حمض الإيثانويك بواسطة محلول أساسي : (تمت جميع القياسات عند الدرجة 25°C) الجزء الأول:

نحضر محلولا مائيا S_a لحمض الإيثانويك حجمه $V=1\ell$ وتركيزه المولي C_a بإذابة كمية من هذا الحمض كتلته m في الماء المقطر.

 S_b ونعايره بواسطة محلول مائي لهيدروكسيد الصوديوم S_a ونعايره بواسطة محلول مائي لهيدروكسيد الصوديوم

. $C_b = 2 \times 10^{-2} mol/l$ ترکیزه

1 - أكتب المعادلة الكيميائية المنمذجة لتفاعل المعايرة.

 V_h بدلالة PH حجم د ان متابعة تغيرات الـ PH

هيدروكسيد الصوديوم المضاف مكننا من رسم المنحنيين

 $\frac{d(PH)}{dV_b} = g(V_b)$ والمنحنى الذي يمثل $PH = f(V_b)$

كما في الشكل -1-.

 $V_b(ml)$ 20

أ V_{beg} عين V_{beg} لمحلول V_{beg} المضاف عند نقطة التكافؤ.

 S_a ب - أوجد قيمة الكتلة m اللازمة لتحضير المحلول

3 - بين أن تفاعل حمض الإيثانويك مع الماء تفاعل محدود .

قيمة قيمة العبارة التالية $Ka = \frac{V_b \times 10^{-PH}}{V_{beq} - V_b}$ عيث من محجم الأساس المضاف أثناء التفاعل, ثم استنتج قيمة -4

. (CH3COOH/CH3COO) الـ pKa الثنائية

 $C_6H_5CH_2OH$ من الكحول البنزيلي $m_a=6g$ من حمض الايثانويك و $m_a=60$ من الكحول البنزيلي $m_a=6g$ المتر: نحضر خليطا يتكوّن من $m_a=6g$ من حمض الايثانويك و $m_a=6g$ من الكحول البنزيلي في شروط تجريبية معينة . نسخن المزيج بالارتداد بعد إضافة قطرات من حمض الكبريت المركز وحجر الخفان , فنحصل عند نهاية التفاعل على كتلة $m_{ester}=10g$ ايثانوات البنزيل .

1 - أكتب المعادلة الكيميائية المنمذجة لتفاعل الاسترة .

 $_{1}$ - احسب مردود تفاعل الأسترة $_{1}$.

الايثانويك $n_a = 0.1 mol$ من حمض الايثانويك $n_a = 0.1 mol$ من حمض الايثانويك

و $n_{a\ell}=0.2$ من الكحول البنزيلي أوجد المردود r_2 في هذه الحالة و قارنه مع $n_{a\ell}=0.2$

المركب العضوي	الكحول البنزيلي	حمض الايثانويك	يثانوات البنزيل
الكتلة المولية (g / mol)	108	60	150

الجزء الثاني:

 $(Ni^{2+} + SO_4^{2-})$ ننجز عمود بغمر صفيحة من النيكل Ni في كأس بيشر يحتوي على V=100ml من محلول مائي لكبريتات النيكل الثنائي V=100ml في كأس يحتوي على الحجم V=100ml من محلول مائي لكبريتات تركيزه المولي V=100ml و صفيحة من الكوبالت $C_0=0.3mol/l$ و صفيحة من الكوبالت $C_1=3\times 10^{-2}mol/l$ تركيزه المولي $C_2=0.3mol/l$ نوصل المحلولين بحسر ملحي .

نربط قطبي العمود بناقل اومى وأمبير متر وقاطعة .

نغلق القاطعة عند اللحظة t=0 فيمر بها تيار كهربائي شدته I نعتبرها ثابته .

1 - اختر الجواب الصحيح من بين الاقتراحات لتالية:

أ - جهة التطور التلقائي للمجموعة الكيميائية المكونة للعمود الاتجاه 2 لمعادلة التفاعل

 $.25^{\circ}$ C عند الدرجة K=100 عند التوازن الموافق للتفاعل K=100 عند الدرجة $Ni_{aq}^{2+}+Co_s = \frac{1}{2}Ni_s + Co_{aq}^{2+}$

ب - مسرى الكوبالت هو القطب الموجب.

ج - تنتقل الالكترونات عبر الجسر الملحي للحفاظ على الشحنة الكهربائية للمحاليل.

د - خارج العمود تكون جهة التيار الكهربائي من مسرى النيكل نحو مسرى الكوبالت.

هـ - يحدث تفاعل أكسدة عند القطب الموجب.

I=100 mA ن المنه علما أن المنه عند التوازن , واحسب قيمته علما أن $I,\,V\,,\,C_{\!_1}\,,\,C_{\!_2}\,,\,F\,,\,K$ واحسب قيمته علما أن I=100 m

. t_f , t=0 النيكل بين اللحظتين Δm لكتلة مسرى النيكل بين اللحظتين Δm عند Δm

M(Ni) = 58.7 g / mol ; 1F=96500C/mol : المعطيات

3as.ency-education.com

الموضوع الثاثي

التمرين الأول: (04 نقاط)

الجزء الأول (فيزياء) 14 نقطة

 α معطية جسيمة α . أ ما هو سبب إصدار الجسيمة α عطية أ معطية عليه أ ما هو سبب إصدار الجسيمة α

ب - أكتب معادلة التفاعل النووي الحادث مستنتجا النواة البنت من بين الأنوية التالية: 88 , 83Bi , 80Hg , 82Pb النووي الحادث مستنتجا النواة البنت من بين الأنوية التالية:

 $m_0 = 10g$ عينة من البولونيوم 210 عند اللحظة t=0 على كثلة 210 عينة من البولونيوم 210 عند اللحظة t=0

أ - أحسب كمية المادة الابتدائية n_0 للعينة المشعة.

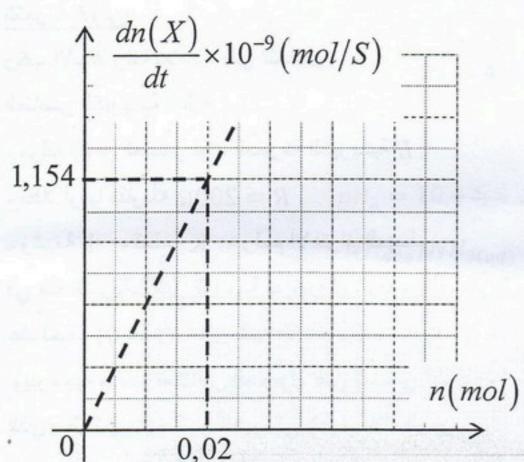
 n_0 ب - أوجد العلاقة النظرية n(X) و n(Po) و

t عند اللحظة t

 $n(X) = n_0 (1 - e^{-\lambda t})$: أكتب قاتون التناقص في كمية المادة، ثم أثبت صحة العلاقة:

د - مكنة الدراسة التجريبية من رسم البيان: $\frac{dn(X)}{dt} = f(n)$ الموضح بالشكل المقابل

1 - أكتب العلاقة البيانية.


 $\frac{dn(X)}{dt} = an$: نظلاقة من العلاقة (2-ج) أثبت أن 2

حيث a ثابت يطلب تعيين مدلوله الفيزيائي

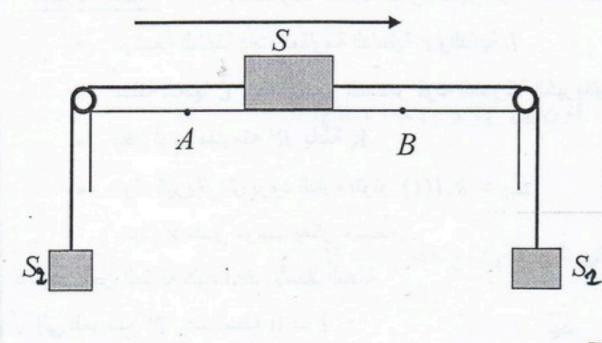
عرفه، ثم حدد قيمته

. $t_{1/2}$ العمر - 3

n(X) = f(t) مثل المنحنى - 4

التمرين الثاني: (04 نقاط)

لتعين الكتلة m، لجسم صلب (S) وشدة قوة الاحتكاك \overrightarrow{f} المعيقة للحركة على المستوى الافقي التي نعتبر ها ثابتة الشدة ومستقلة عن سرعته نحقق التجربة التالية:


نوصل الجسم (S) بجسم (S₂) وجسم (S₂) بواسطة خيطين مهملي الكتلة وعديمي الامتطاط يمرا على محزي بكرتين مهملي الكتلة تدوران حول محورين ثابتين حيت $m_1 = 2m_2 = 0.570$

. t مسافة X=AB بعد زمن قدره X=AB بعد زمن قدره $t_0=0$ ليقطع الجسم (S) مسافة

1- دراسة الحركة:

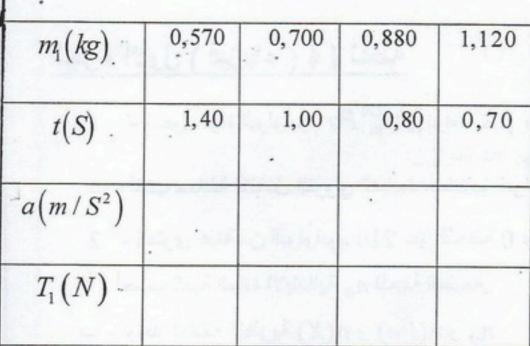
- أ. أرسم الشكل على ورقة الاجابة ومثل عليه كل القوى المؤثرة على الاجسام (S_1) , (S_1) , (S_1)
- $(S_2), (S_1), (S)$ بتطبیق القانون الثانی لنیوتن علی الاجسام a بین أن عبارة التسارع a

$$\frac{d^2x}{dt^2} = a = \frac{(m_1 - m_2)g - f}{m_1 + m_2 + m}$$
: عطى بالعلاقة :

ت. استنتج طبيعة الحركة.

حررنا التجربة السابقة من أجل قيم مختلفة لكتلة الجسم (S_1) مع عدم تغيير الكتلة (S_2) وقسنا في كل 2

مرة الزمن اللازم لقطعة مسافة X=1m، فحصلنا على الجدول التالي:


- باستغلال السؤال "1-ب" يمكن كتابة توتر الخيط

بالعلاقة : $T_1=lpha a+eta$ حيث T_1 هو توتر الخيط الذي يخضع له الجسم بالعلاقة : a ، a ، a ، a ، a . a

a , g , m_1 بدلالة T_1 عبارة أ ـ اكتب عبارة الم

ب - بين أن المعادلة الزمنية للحركة تكتب بالشكل $X = \frac{a}{2}t^2$ ثم أكمل الجدول

$$f$$
 , m د - استنتج من المنحنى $T_1 = f(a)$: ج - ارسم البيان

. g = 9,8N / kg : المعطيات

 $\Lambda i(mA)$

التمرين الثالث: (06 نقاط): __يشتكي مخبري كثيرا من تأثير بعض المواد الكيميائية برطوبة الهواء ولتحديد نسبة الرطوبة χ داخل المخبر، اختار الأستاذ بمعية تلاميذه لقسم χ ت ر القيام بتجربتين بغرض: التحقق من قيمة الذاتية χ لوشيعة χ مقومتها الداخلية χ

(b)

PROPERTY SEQUE

تحديد نسبة الرطوبة χ بواسطة مكثفة تتغير سعتها C مع نسبة الرطوبة

التجربة الأولى:

ركب الأستاذ رفقة تلاميذه على التسلسل العناصر الكهربائية التالية:

- مولدا للتوتر المستمر قوته المحركة الكهربائية E

 $R=200\Omega$ يناقلا أوميا مقاومته -

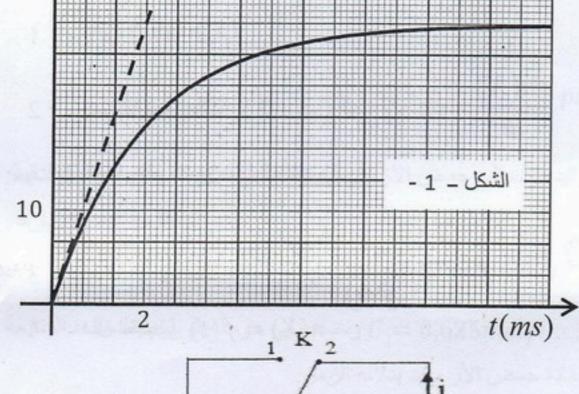
- وشيعة b - قاطعة K - راسم الاهتزاز المهبطي

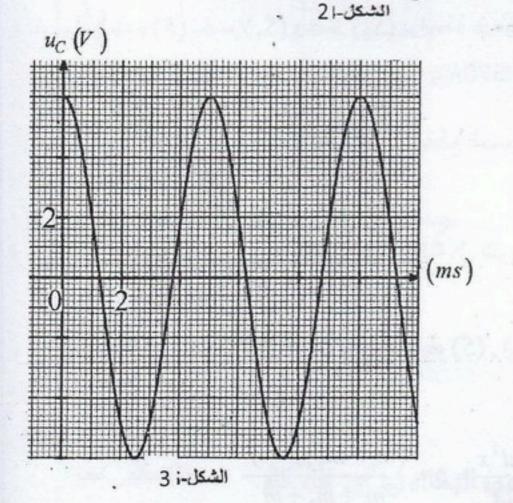
في هذه التجربة، نعتبر المقاومة الداخلية للوشيعة مهملة أمام R

عند لحظة (t=0)، أغلق تلميذ القاطعة K

وببرمجية مناسبة تمكنا من الحصول على المنحني "الشكل -1 -

الذي يمثل تغير شدة التيار الكهربائي i(t) بدلالة الزمن.


- 1- ارسم الدارة الموافقة
- $u_{R}(t)$ بين كيفية توصيل راسم الاهتزاز المهبطي لمشاهدة التوتر -2
 - 3- جد المعادلة التفاضلية التي تحققها شدة التيار الكهربائي.
- au عبارة t -4 معادلة التفاضلية هو: $t(t) = \frac{E}{R}(1 e^{-\frac{t}{\tau}})$ عبارة -4
 - L = 0.4H : حقق أن ذاتية الوشيعة هي


التجربة الثانية: ركب الأستاذ رفقة تلاميذه الدارة الكهربائية الممثلة بالشكل 2-

- L الوشيعة السابقة ذات المقاومة الداخلية γ والذاتية
- مكثفة سعتها C مولدا للتوتر المستمر قوته المحركة الكهربائية E
 - ناقلا أوميا مقاومته 'R بادلة K
 - $u_G = k.i(t)$ مولد كهربائي G يزود الدارة بتوتر k.i(t) مولد كهربائي مقدار موجب يمكن ضبطه.

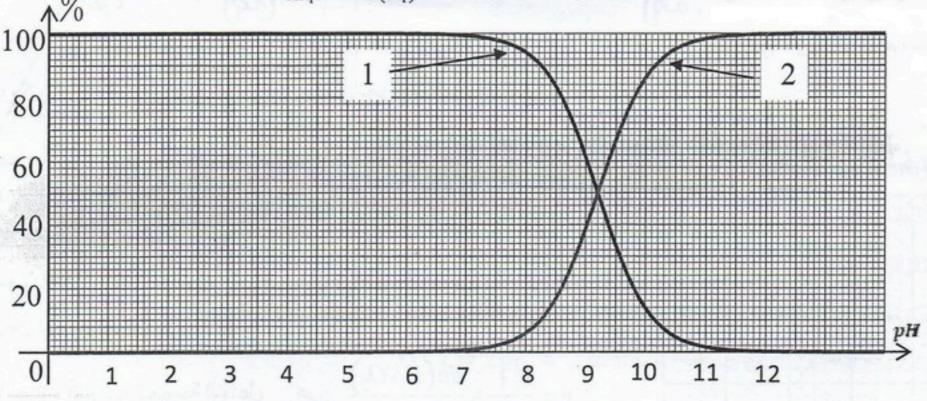
بعد شحن المكثفة كليا، أعاد الأستاذ البادلة

إلى الموضع "2" عند لحظة 0 = t

K=r على $u_{c}(t)$ على على منحنى الشكل -3 - التوتر $u_{c}(t)$ المحصل عليه بين طرفي المكثفة في حالة ضبط المعامل $u_{c}(t)$

- 1- ما هو نمط الاهتزازات؟ علل
- $u_{c}(t)$ جد المعادلة التفاضلية التي يحققها التوتر -2

. حل المعادلة التفاضلية هو :
$$u_{C}(t)=U_{0}.cos\left(\frac{2.\pi}{T_{0}}.t\right)$$
 : عبارة الدور T_{0} للحركة . -3


- χ منوية χ
 - 5- في حالة وجود مقاومة في الدارة (LC) أرسم بشكل كيفي $U_{c}=f(t)$ مع التبرير

الجزء الثاني (كيمياء) 06 نقاط: الجزء الأول: دراسة محلول مائي للأمونياك وتفاعله مع الحمض:

محلول مائي للأمونياك I

- S_1 المحلول pH المحلول $C_1 = 10^{-2} mol/l$ المحلول و النشادر) تركيزه المولي pH المحلول مائيا S_1 اعطي قياس pH المحلول $pH_1 = 10,6$ القيمة $pH_1 = 10,6$
 - 1 أكتب المعادلة الكيميائية المنمذجة لتفاعل الأمونياك مع الماء
 - $au_1 = 4\%$ تحقق أن pH_1 , C_1 , K_e عبارة نسبة التقدم النهائي بدلالة ، pH_1 , روجد عبارة نسبة التقدم النهائي بدلالة
 - نيمتها au_1 , au_2 , au_3 التفاعل بدلالة au_1 , au_3 الحسب قيمتها au_4

 $pH_2=10,4$ فنحصل على محلول S_2 نقيس pH المحلول S_1 فنجصل على محلول على محلول S_1 المحلول S_1 المحلول $NH_{4ag}^+/NH_{3(ag)}$ الشكل التالي مخطط توزيع النوعين الحمضي والقاعدي للثنائية

ا - أرفق النوع القاعدي للثنائية $NH_{4aq}^{+}/NH_{3(aq)}$ بالمنحنى الموافق له محللا جوابك

 pK_{a1} - اعتمادا على منحنى الشكل حدد: أ- 2

ب - نسبة التقدم النهائي au_2 للتفاعل في المحلول au_2 جـ قارن بين au_1 و au_2 ماذا تستنتج؟

النشادر (الأمونياك) مع شوارد مثيل أمونيوم

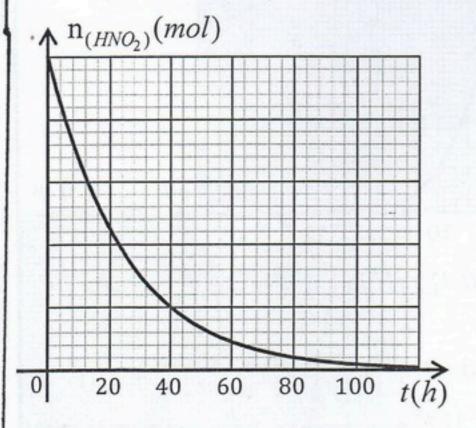
 $V=V_1$ مع حجم C_1 من المحلول المائي S_1 للأمونياك ذي التركيز المولي V_1 مع حجم المراب نمزج في كأس حجما

 $C=C_1$ تركيزة المولي تركيز ($CH_3NH_{3aq}^++Cl_{aq}^-$) تركيزة المولي S_2

- 1. أكتب المعادلة الكيميائية المنمذجة لتفاعل النشادر مع شوارد الأمونيوم CH3NH3aa
 - 2 أوجد ثابت التوازن K الموافق لمعادلة هذا التفاعل؟
- نه يمكن التعبير عن تركيز كل من CH_3NH_2, NH_4^+ في الخليط التفاعلي عند التوازن CH_3NH_2, NH_4^+

$$\left[CH_3 \cdot NH_2 \right]_{aq} = \left[NH_4^+ \right]_{aq} = \frac{C}{2} \times \frac{\sqrt{K}}{1 + \sqrt{K}} : \rightarrow$$

4 - حدد pH التفاعل عند التوازن.


المعطيات:

- تمت جميع القياسات عند درجة الحرارة 25°C.
 - $k_e = 10^{-14}$ الجداء الشاردي للماء •
- $pK_{a1} \rightarrow pK_a(NH_{4(aq)}^+/NH_{3(aq)}:$ نرمز لـ:
- $pK_a(CH_3NiH_{3(aq)}^+/CH_3NH_{2(aq)}) = pK_{a2} = 10.7$ •

الجزء الثاني: دراسة تفكك حمض الأزوتيد. يتفكك حمض الأزوتيد ببطء إلى حمض الأزوت وغاز أحادي الأزوت وفق المعادلة التالية:

3 HNO2 = (H30+ NO3-) +2NO

نحضر محلولا (S) من حمض الأزوتيد حجمه: V = 800ml وتركيزه: C = 0,625mol/l ونضعه في حوجلة ثم نقوم بتسخينه، المتابعة الزمنية لتفكك مكنت من الحصول على البيان الذي يعطي تغيرات كمية مادة حمض الأز وتيد بدلالة الزمن.

- 1- لماذا نقوم بتسخين المحلول؟
- 2- البيان ينقصه سلم الرسم عينه
- 3- أنجز جدولا لتقدم التفاعل الحاصل ثم أحسب قيمة التقدم الأعظمي.
 - 4- عرف زمن نصف التفاعل ثم حدد قيمته
- $v = -\frac{1}{3V} \times \frac{dn(HNO_2)}{dt}$: هي: أن عبارة السرعة الحجمية للتفاعل عي: -5
 - t=60h و t=20h و اللحظتين t=60h و أحسب قيمتها عند اللحظتين
 - كيف تتطور السرعة مع الزمن؟ ما هو العامل الحركي المراد ابرازه؟
- $x = \frac{n_0}{4}$ هين أنه عندما يكون $[NO_3] = [NO_3]$ فإن قيمة تقدم التفاعل هي 4

حيث n_0 عدد مولا حمض الأز وتيد الابتدائية

مع تمنيات أستاذة المادة بالتوفيق والنجاح في البكالوريا إن هاء الله.