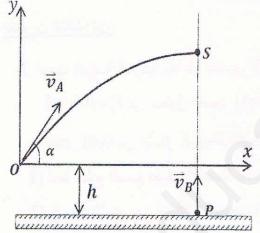
المدة: 4 سا

الشعبة : رياضي+تقني رياضي

الإمتحان التجريبي في مادة: العلوم الفيزيانية


الموضوع الأول ****الجزء الأول(14نقطة)***

التمرين الأول (60)

نقذف من النقطة (0) جسما A نعتبره نقطة مادية بسرعة \vec{v}_A تصنع مع محور القواصل للمعلم (0xy) في المستوي الشاقولي زاوية $\alpha=30^\circ$ وطويلتها $\alpha=40m/s$ وذلك في اللحظة $\alpha=30^\circ$. توجد النقطة $\alpha=30^\circ$ على ارتفاع $\alpha=40m/s$ عن سطح الأرض. وبعد 1s نقذف جسما $\alpha=2m$ نعتبره نقطة مادية ، من النقطة $\alpha=10^\circ$ من سطح الأرض بسرعة شاقولية نحو الأعلى طويلتها $\alpha=10m/s$ نهمل تأثير الهواء على حركتي الجسمين.

- . (Oxy) أوجد المعادلتين الزمنيتين للجسم (t):A الجسم (t):A أوجد المعادلتين الزمنيتين الجسم (t):A
- (2) احسب فاصلة النقطة (P) في المعلم (Oxy) ، علما أن الجسم B يمر ب (S) ذروة مسار الجسم A .
 - $\cdot y_B(t): Oy$ أوجد المعادلة الزمنية للجسم B على المحور (3
 - (S) احسب المسافة بين الجسمين A و B لحظة مرور A بالنقطة (4)
 - كم يجب أن تكون قيمة v_B حتى يصطدم الجسمان في النقطة (5) كم يجب أن تكون قيمة v_B

(S) خلال صعود الجسم B ؟.

 \cdot B أوجد خصائص شعاع سرعة الجسم A لحظة قذف الجسم

التمرين الثاني (4ن)

ثلاثة كواكب a ، كتلها m_c ، m_b ، m_a ، تدور حول نجم M_E كتلته M_E في مدار ات دائرية مركزها هو مركز النجم . نعتبر أن كتل الكواكب والنجم موزّعة تناظريا على حجومها .

ندرس حركة الكواكب الثلاثة في معلم مبدؤه مركز النجم ، ونعتبر أن هذه الكواكب لا تخضع إلا لتأثير هذا النجم .

صفحة 1من8

يشمل الجدول أدوار وأنصاف أقطار الكواكب الثلاثة.

$T_c = 84,4$	$T_b = 12,93$	$T_a = 5,366$	(jours) T الدور
$r_c = 2,54 \times 10^{-1}$	$r_b = 7,27 \times 10^{-2}$	r _a	نصف قطر الدوران r (U.A)

 $1U.A = 1.5 \times 10^{11} m$ هي الوحدة الفلكية ، حيث U.A

- G الكوني المعدي أوجد وحدة قياس الثابت الكوني الكوني الكوني أوجد وحدة قياس الثابت الكوني G
 - 2 بين أن حركة هذه الكواكب منتظمة ، ثم احسب سرعة الكوكب c .
 - r_a اذكر القانون الثالث لكبلر ، ثم احسب قيمة r_a
 - . (M_E) عتلة النجم 4
 - 5 إن حركة الأقمار الصناعية حول الأرض شبيهة بحركة الأقمار حول الكواكب. يدور قمر صناعي حول الأرض في مدار يشمل خط الاستواء، ويظهر ثابتا لملاحظ يقف على خط الاستواء.

أ/ما هي أهمية مثل هذه الأقمار الصناعية؟

ب/ ما هو ارتفاع هذا القمر الصناعي عن سطح الأرض.

 $M_T = 6 \times 10^{24} \, kg$ • $G = 6.67 \times 10^{-11} \, SI$ • $R_T = 6400 \, km$ • T 24h هور الأرض حول محور ها

التمرين الثالث (4ن)

- I. بهدف الدراسة الحركية لتفاعل التصبن لأستر E صيغته الجزيئية المجملة $C_1H_8O_2$ نمزج في بيشر حجما $C_1=0.1 \mod /L$ من محلول الصود $C_1=0.1 \mod /L$ من محلول الصود $V_1=100 \mod /L$ تركيزه المولي $V_1=100 \mod /L$ مع $V_1=100 \mod /L$ من الأستر E (سائل نقي) ليصبح حجم الوسط التفاعلي V_1 في الدرجة E من الأستر E من الأستر E (سائل نقي) ليصبح حجم الوسط التفاعلي E في الدرجة E
 - مع تسمية كل منها. E أعط جميع الصيغ نصف المغصلة للأستر E
 - C_2H_5OH والايثانول CH_3COOH إنّ هذا الأستر نتج من تفاعل حمض الايثانويك CH_3COOH والايثانول

اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحاصل في البيشر بين محلول الصود والأستر E مستعملا الصيغ نصف المفصلة.

II. تابعنا تطور هذا التفاعل عن طريق قياس الناقلية G للوسط التفاعلي خلال فترات زمنية مختلفة وسجلنا النتائج في الجدول الآتي:

t(s)	0	30	60	90	120	150	180	210
G(mS)	46,20	18,60	12,40	12,30	11,15	10,80	10,70	10,70

صفحة2من8

1). فسر تناقص الناقلية G مع تطور التفاعل.

. $G = K \times \sigma$ ثابت الخلية و σ الناقلية النوعية حيث K ثابت الخلية و

 λ_i بدلالة K, C_1, V_1, V_T والناقليات النوعية المولية الشاردية K والناقليات النوعية المولية الشاردية أ

ب) بالاستعانة بجدول تقدم التفاعل، بيّن أن عبارة الناقلية G في اللحظة t تعطى بالعلاقة:

$$G = G_0 + \frac{K}{V_T} x (\lambda_{CH_3COO^-} - \lambda_{HO^-})$$

 $1cm\longrightarrow 5mS$ ورقة ملمترية G=f(t) بأخذ سلم الرسم: $30s\longrightarrow 1cm$ و

$$\frac{K}{V_T}$$
 = 185,5 (SI) أن المخلة $t=0$ عرف سرعة التفاعل واحسب قيمتها عند اللحظة والمخال أن

$$G(t_{1/2}) = \frac{G_0 + G_f}{2}$$
 عند زمن نصف التفاعل $t_{1/2}$ تعطى بالعلاقة: $G(t)$ عند زمن نصف التفاعل عند زمن التفاعل عند ا

- استنتج قيمة ¹/₁/₂

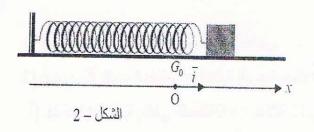
 $\lambda_{CH_{3}COO^{-}} = 4,09 \times 10^{-3} \, S.m^{2}.mol^{-1} \quad (\lambda_{Na^{+}} = 5,01 \times 10^{-3} \, S.m^{2}.mol^{-1} \quad (\lambda_{HO^{-}} = 19,9 \times 10^{-3} \, S.m^{2}.mol^{-1} \quad (\lambda_{Na^{+}} = 5,01 \times 10^{-3} \, S.m^{2}.mol^{-1} \quad (\lambda_{Na^{+}} = 19,9 \times 10^{-3} \, S.m^{2}$

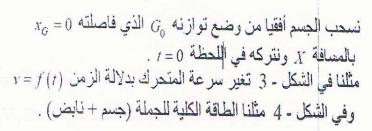
****الجزء الثاني(6ن):التمرين التجريبي ***

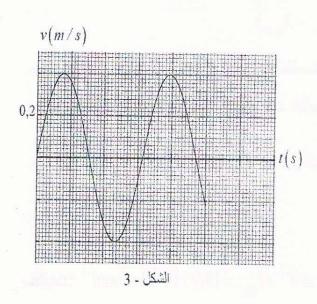
نريد أن نحدد ثابت المرونة (له) لنابض حلقاته غير متلاصقة وكتلته مهملة عن طريق تجربتين :

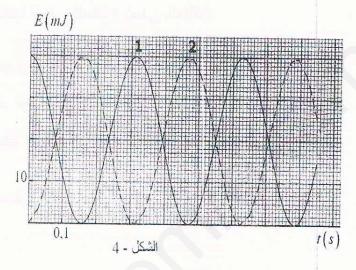
التجربة الأولى:

نَتَبَتُ النَّابِضُ شَاقُولِيا مِن نَهَايِتُهُ العليا وَنَعَلَقُ بِهُ جَسَمًا كَتَلَتُهُ m ، وَنَقَيْسُ الزيادة في طوله (ΔI) . الشكل - 1


نغير الكتل ونقوم بنفس العمل ، ثم نجمع النتائج في الجدول :


	12	
	8	6
		8
4		
لىكل – 1		
	88	8
^		
All	, managed of	
ΔI		
¥		


m(g).	20	40	60	70	100
$\Delta l(mm)$	4	8	12	14	20


التجربة الثانية:

نتُبَت النابض أفقيا ، ونتُبَت في نهايته الأخرى جسما صلبا (S) نعتبره نقطة مادية كتلتها س الشكل - 2

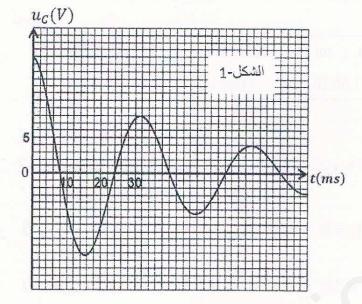
التجربة الأولى:

- . $m = f(\Delta l)$ مثل بیانیا 1
- 2 باستعمال البيان أوجد قيمة ثابت مرونة النابض.

التجربة الثانية:

- $\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$ هي القانون الثاني لنيوتن بيّن أن المعادلة التفاضلية الموافقة لفاصلة المتحرك هي $\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$
 - $x = X\cos(\omega_0 t + \varphi)$ عده المعادلة النفاضلية هو $X = X\cos(\omega_0 t + \varphi)$ عمد التعليل . أنسب كل طاقة للبيان الموافق في الشكل 4 ، مع التعليل . ب / سم المقادير : ω_0 ، ω_0 ، واحسب قيمها .
 - ج/ احسب ثابت مرونة النابض.
 - د / احسب كتلة الجسم (٤) .
 - $g = 10m/s^2$. 3 في الشكل الزمن في الشكل 3

إنتهى الموضوع الأول

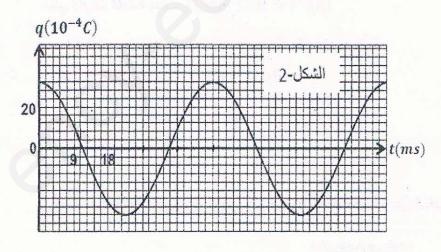

مىفحة4من8

****الجزء الأول (14 نقطة) ***

التمرين الأول (6ن)

تضم دارة كهربائية على التسلسل

- . U=16V مكنُفة سعتها $C=100 \mu F$ مشحونة مسبّقا تحت توثر
 - وشيعة ذاتيتها L ومقاومتها مهملة.
 - معدّلة يُمكن تغيير مقاومتها.
 - قاطعة
 - ا. نضبط المعلّلة على قيمة $R \ll R_c$ ميث R_c هي المقاومة الحرجة للدارة ثم نغلق القاطعة عند اللحظة t=0 . تحصّلنا بواسطة تجهيز مناسب على البيان
 - . 1-الشكل $u_c = f(t)$
 - 1) ما نوع هذه الاهتزازات الكهربائية ؟ اشرح.
 - 2) أوجد قيمة شبه الدور.
 - (3) احسب الطاقة المخزّنة في المكثفة عند اللحظة t=0
 - 4) احسب الطاقة الضائعة بفعل جول عند نهاية الاهتزازة الأولى.
 - 5) مثّل بشكل تقريبي $u_c(t)$ في حالة قيمة مقاومة المعدلة R>R .



K

- ال. نضبط قيمة مقاومة المعدلة على القيمة R=0 ونعيد نفس التجربة السابقة بمكثفة أخرى سعتها C' مشحونة تحت نفس التوتر السابق مثلنا بيانيا q=g(t) الشكل-2.
 - 1) ما نوع هذه الاهتزازات ؟
 - $\frac{d^2q}{dt^2} + \frac{1}{LC'}q = 0$; بيّن أن المعادلة التفاضلية بدلالة شحنة المكتّفة تُكتب بالشكل (2
- ن يُعطى حل هذه المعادلة التفاضلية بالشكل: $q(t) = Q_0 cos(\omega_0 t + \varphi)$ بيّن أن النبض الذاتي يُعطى بالعلاقة (3)

 $\omega_0 = \frac{1}{\sqrt{LC'}}$

- 4) احسب قيمة ذاتية الوشيعة.
- 5) احسب الشدة العظمى للتيار في الدارة.
- 6) بين أن الطاقة في الدارة تبقى ثابتة مهما
 كان الزمن.

صفحة5من8

التمرين الثاني (4ن)

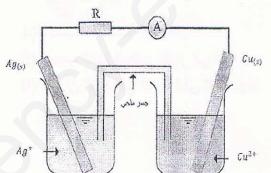
تنشطر نواة الأور انيوم 235 داخل مفاعل نووي حسب المعادلة التالية:

$$^{235}_{92}$$
U + $^{1}_{0}$ n \longrightarrow $^{142}_{56}$ Ba + $^{91}_{36}$ Kr + 3 $^{1}_{0}$ n

خلال سيرورة هذا الإنشطار يؤدي تصادم نوترون واحد بنواة الأورانيوم 235 إلى تكون 3 نوترونات. نعتبر أن المدة الزمنية على التي تفصل بين لحظة تولد نوترون عن انشطار أول نواة الأورانيوم و لحظة الانشطار الذي يحدثه هذا النوترون لنواة أخرى من الأورانيوم، تبقى ثابتة ما دامت كثافة نوى الأورانيوم 235 لا تتغير في الوسط التفاعلي.

عند لحظة t=0 نرسل نوترونا واحدا نحو نواة الأورانيوم 235.

نعطي:


 $m\binom{91}{36}Kr$ = 90,92627u ; $m\binom{142}{56}Ba$ = 141,92285u ; $m\binom{235}{92}U$ = 235,04392u ; $m\binom{1}{0}n$ = 1,008665u 1Mev = 1,602×10⁻¹³J ; 1u = 931,5MeV/c² = 1,66.10⁻²⁷kg ; 1jour = 24h

1 _ أعط تعريف تفاعل الانشطار

- |E| لطاقة النووية الناتجة عن تفاعل انشطار نواة واحدة من الأورانيوم |E| لطاقة النووية الناتجة عن تفاعل انشطار نواة واحدة من الأورانيوم 235
- $t_1 = \delta t$ عند النوى التي انشطرت عند اللحظة $t_1 = \delta t$ ؟ أحسب الطاقة المحررة من طرف هذا العدد من النوى .
 - $t_{\rm n}={
 m n}\delta t$. و استنتج بالنسبة ل $t_{
 m n}={
 m n}\delta t$. و استنتج بالنسبة ل $t_{
 m n}={
 m n}\delta t$
- $2 |E_n| = |E|(3^{n+1}-1)$: تحقق العلاقة : $t_n = n\delta t$ و t = 0 الطاقة المحررة بين اللحظتين $t_n = n\delta t$ و t = 0

التمرين الثالث (4ن)

ننجز عمود نحاس فضة بواسطة جسر ملحي ونصفي عمود. الأول مكون من صفيحة نحاس مغمورة جزئيا في محلول ماني لكبريتات النحاس تركيزه بحيث $mo\ell/L$ = $0.05 \, mo\ell/L$ والثاني مكون من صفيحة الفضة مغمورة في محلول ماني لنترات الفضة بحيث $Ag^+ = 0.02 \, mo\ell/L$.

الأكسدة -ارجاع الممكن حدوثه كالتالي: (1 تكتب معادلة تفاعل الأكسدة -ارجاع الممكن حدوثه كالتالي:
$$2Ag_{(S)}+Cu_{(aq)}^{2+}\rightleftarrows 2Ag_{(aq)}^{+}+Cu_{(S)}$$

. $K = 2,6.\,10^{-16}$ نعطي ثابت التوازن المقرونة بهذا التفاعل

ما منحى تطور هذه الجملة ؟

2) استنتج التفاعلين الذين يحدثان على مستوى الصفيحتين ، وعين منحى انتقال الالكترونات في العمود.

صفحة6من8

- 3) أعط الرمز الاصطلاحي للعمود.
- I=86~mA علما أن العمود يولد خلال المدة الزمنية $\Delta t=1.5~mn$ تيارا شدته (4
 - أ) ما كمية الكهرباء المتدخلة خلال هذه المدة.
- ب) أحسب تغير كمية مادة شوارد النحاس ١١ وتغير كمية مادة شوارد الفضة خلال هذه المدة.

. $F = 96500 \ C/mol$ نعطي:

****الجزء الثاني(6ن)***

التمرين التجريبي:

بعتبر حمض الميثانويك HCOOH (حمض النمل) من وسائل الدفاع للنمل ، نريد دراسة بعض خواص محلوله المائي ، V = 100mL من حمض النمل ذي التركيز المولي c_0 في حوجلة عيارية ذات سعة $V_0 = 2mL$ نضع حجما $V_0 = 2mL$ من حمض النمل ذي التركيز المولي وربي المحلول جيدا فنحصل على محلول (S_A) ذي تركيز المولي $\sigma = 0.25 \, S/m$ عند قياس ناقليته النوعية نجد $\sigma = 0.25 \, S/m$.

$$\lambda_{H_3O^+} = 35,00 \times 10^{-3} \, S. \, m^2 \, / \, mol$$
 , $\lambda_{HCOO^-} = 5,46 \times 10^{-3} \, S. \, m^2 \, / \, mol$; where $\lambda_{HCOO^-} = 5,46 \times 10^{-3} \, S. \, m^2 \, / \, mol$

- 1 أكتب معادلة انحلال حمض الميثانويك في الماء -1
 - C_A و C_0 و العلاقة بين C_0 و
 - $\cdot (S_A)$ المحلول pH قيمة -3
- HCOOH نريد دراسة التفاعل الكيميائي الذي يحدث بين حمض الميثانويك HCOOH و كحول صيغته الجزيئية المجملة $0,2\ mol$ نضع في ثمانية أنابيب اختبار مرقمة من $0.1\ 10.0\ 10$

t (heure)	0	1	2	3	4	5	6	7
n(حمض)mol	0,200	0,114	0,084	0,074	0,068	0,067	0,067	0,067
n(أستر)mol		Professional Control of the Control						

مىفحة7من8

- 1- أكمل الجدول أعلاه .
- $(1cm oldsymbol{ oldsymbol{ oldsymbol{c}}} 1h$ و فق السلم $(1cm oldsymbol{ oldsymbol{o}} 1n)$ و $(1cm oldsymbol{ oldsymbol{o}} 1h)$ و $(1cm oldsymbol{ oldsymbol{o}} 1h)$ و $(1cm oldsymbol{ oldsymbol{o}} 1h)$ و $(1cm oldsymbol{ oldsymbol{o}} 1h)$
 - $\cdot C_4 H_{10} O$ و الكحول HCOOH و الكحول -3
 - 4- استنتج من البيان:
 - t=2h أ سرعة التفاعل عند اللحظة
 - ب حدد اللحظة الموافقة لنهاية هذا التحول ؟
 - استنتج صنف الكحول المستعمل و صبيغه نصف المفصلة الممكنة.
 - 5- أكتب معادلة التفاعل المنمذج للتحول الحاصل بين الحمض و الكحول ذي الصيغة المتفرعة . مع تسمية الأستر الناتج
 - 0.2mol عند اللحظة t=6h عند اللحظة t=0 من الأستر -6
 - في أي جهة تتوقع تطور الجملة الكيميائية ؟ علل.

إنتهى الموضوع الثاني

بالتوفيق تمنياتي لكم بالنجاح في البكالوريا وبمعدل جيد أو أكثر إن شاء الله ***

صفحة8من8