 المدة : ثلام ساعات ونصف

العلوم الثقزينيائيـــة

الشعبة : علوم تجريبيةٍ

(لنئسِين الأول :

المتابعة الزمنية لنطوِ هذا التُجول عن طريق فياس الناقليةٍ النوعية للوسط اللثفاعلي سمحت بالحصول على البيان التالي (الشككل1) :
 ($\left.\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2}\right)$ ($\left.\mathrm{Al}^{3+} / \mathrm{Al}\right)$ المنمذج لهذا التحول . 2 ـ انجز جدول التّقدم ثم عين الـتفاعل الـحد .
 4 ـ 4 ـ أوجد $t=6$ min الوسط التقاعلي عند اللحظة

5 ـ أوجد السرعة الحجمية لتشكل الشوارد+3 A بدلالة الناقلمية النوعبة وأحسب فَيمتها عند اللحظة $t=6$ min

$$
\begin{aligned}
\lambda\left(\mathrm{A} \ell^{3+}\right) & =4 \mathrm{~ms} \cdot \mathrm{~m}^{2} / \mathrm{mol} ; \\
M(\mathrm{~A} \ell) & =27 \mathrm{~g} / \mathrm{mol}, \\
\text { يعطى : } \quad & \lambda\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)=7,6 \mathrm{~ms} \cdot \mathrm{~m}^{2} / \mathrm{mol}=35 \mathrm{~ms} \cdot \mathrm{~m}^{2} / \mathrm{mol}
\end{aligned}
$$

 $C_{1}=2 \mathrm{mmol} / \mathrm{L}:$ _ حصض البروبانويك :

 أ ـ أكتب المعادلة الكيميائية بالصيغ نصف المفصلة للثفاعل بين حصض البروبانويك والإيثانول ثم اعط اسم - الإسشر الناتاتج ج - عين جهةّ تطور الجملة الكيميائية .

تتّابع تُطور الجملة الكيمائية عن طريق معايرة كمية مادة حصض البروبانوياك بواسطة محلول ($\left.\mathrm{Na}_{(a q)}^{+}+\mathrm{HO}^{-}{ }_{(a q)}\right)\left(\begin{array}{c}\text { هيروكسيد الصوليون }\end{array}\right.$

1ــ أ ـ استتَّج بيانيا كل من شُدةٌ الثيّار الكهربائي في
اللنظام الدائم وقيمة ثابت الزمن ζ اللاارة . ب ـ أحسب كل من المقاومة (r) و الذاثية
.
2 ـ في النظام الإنقالي :
أ ـ أثبثت أن المعادلة التّفاضلية لتُطور شدة
التيار المار في الدارة تحقق العلاقة :

ح شيث $\frac{d i}{d t}+\frac{i}{\zeta}=\frac{I_{0}}{\zeta}$ $i(t)=I_{0}\left(1-e^{\frac{-t}{\zeta}}\right)$ ب ب بين أن حل المعادلة الثّفاضلية السابقة هو من الشكل - ج 3 ـ ننغير قيمة الذاتية (() ونسجل فيم ثُابت الزمن ک فنصل على النتائج التالية :

$\zeta(\mathrm{ms})$	4	8	12	20
$L(H)$	0,1	0,2	0,3	0,5

أ ـ أرسم المنحى البياني (弓) L (L

التمـرين الداريع :

البوتاسيوم (${ }^{40}$) الموجود في الصخور يتفكك إلى غاز الأرغون ${ }^{40}$ (المستقر حسب النمط ${ }^{4}$ ، ${ }^{\text {(}}$ ، -والذي يبقى محجزا داخل الصخور

1 ـ ـ أكتب معادلة اللثفكا علما أن عدد النوترونات في نواة الأرغون هو 22 . 2 ـ 2 ـ أحسب الطاقة المحررة خلا هذا التحول النووي

3 - باعثبار أن عدد أنوية الأرغون معدومة عند اللحظة الإلندائية ، عبر عن اللنسبة ثابت النشاط الإشعاعي λ والزمن t حيث $N(A r)$ عدد أنوية الأرغون ، $N(K)$ عدد أنوية البوتاسيوم . t 2bsill

ب - عرف زمن نصف العمر th

أـــــ ماهو البيان المناسب ؟ علل . - ج ـ بالاستحانةٌ بالبيان ، أوجد زمن نصف العمر للبوتاسيوم
 $\mathrm{m}\left({ }^{40} \mathrm{Ar}\right)=6,635913 \cdot 10^{-26} \mathrm{~kg} ; \cdot \mathrm{m}\left({ }^{40} \mathrm{~K}\right)=6,636182 \cdot 10^{-26} \mathrm{~kg} ; \mathrm{m}_{\mathrm{e}}=9,1 \cdot 10^{-31} \mathrm{~kg} ; \mathrm{C}=3.10^{8} \mathrm{~m} / \mathrm{S}$
 بزاوية \quad ب $\alpha=30^{\circ}$ والتي نعتبر شُتها ثابتةّ ومستقلة عن سرعته ، نحقق التجربة التالية :

1-1 بَّطبيق قانون نيوتن الثانتي أكدرس حركة هذه الجملة وحدد طبيعتّها .
 اللمسافة $x=1 m$ فحصلنا على جدول القياسات التاللي :

$m_{2}(k g)$	0,50	0,80	1,00	1,18	1,70
$t^{2}\left(s^{2}\right)$	1,79	0,59	0,46	0,40	0,32
$a\left(\mathrm{~m} / \mathrm{s}^{2}\right)$					
$T(N)$				0	

س سل

$$
g=10 \mathrm{~m} / \mathrm{s}^{2} \quad \text { نـنـبر }
$$

I-I يتفكك الماء الأكسجيني ثلقائيًا ويطئ معطيا غاز الأكسيِن والماء عند درجة حرارة ثابثتّة . عند اللحظة t=0 الجملة الكيميائية خلا الزمن بقياس حجم غاز الأكسجين المنطلق تحت ضغط ثابت وفي شروط تجريبية يشّل فيها 1 mol من الغاز حجماً يساوي $24 L$ ، فنحصل على النتائج الثتالية :

$t(\min)$	0	5	10	15	25	35	55	75
$V_{O_{2}}(\mathrm{~mL})$	0	15,0	28,0	39,4	57,6	71,6	90,4	101,2
$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] \cdot 10^{-3} \mathrm{~mol} / \mathrm{l}$								

11 ـ أكتب معادلةٌ تفكى الماء الأكسجيني 2 ـ أ ـ أنجز جدول تُقدم الثفاعل .
 $5 \mathrm{~min} \longrightarrow 1 \mathrm{~cm}$
; $\quad 10^{-3} \mathrm{~mol} / \mathrm{L} \longrightarrow 1 \mathrm{~cm}$

(II - $V_{m}=24 L / m o l ~\left(\mathrm{Fe}_{(a q)}^{3+}+3 C l_{(a q)}^{-}\right)$

$\Delta t(s)$ مدة التّر بـة	10	5
	1	2
	24	24

$t(j)$	0	40	80	120	160	200	240
$\frac{N}{N_{0}}$	1,00	0,82	0,67	0,55	0,45	0,37	0,30

$\left\{\begin{array}{l}t: 40 j \longrightarrow 1 \mathrm{~cm} \\ -\ln \frac{N}{N_{N}}: 0,2 \longrightarrow 1 \mathrm{~cm}\end{array}\right.$
ب ـ أحسب بيانيا ثابت التثنكاك (ثابت النشاط الإشعاعي) λ واستشّت زمن نصف عمر للبولونيوم 210 .
ج - ماهو الزمن اللازم لكي ثِّبح عدد الأنوية بِّاوي 100 من العدد الإبتّائي للأنوية 4- إن طاقةّ ارتباط نواة البولونيوم 210 هي 1605,88 MeV.أحسب طاقةً ارتباط نواة الكربون C6 14. - وبين أي النواتين أكثر استقّرارا

$$
\begin{aligned}
& m_{p}=1,00728 u ; m_{n}=1,00866 u ; M_{P o}=210 \mathrm{~g} / \mathrm{mol}: \text { يعطى } \\
& m\left({ }_{6}^{14} \mathrm{C}\right)=14,0065 u ; N_{A}=6,02 \cdot 10^{23} \mathrm{~mol}^{-1}
\end{aligned}
$$

الـلتمرين الثـالث :
ينشكل حضض اللبن ذو الصـيغة الجزيئية

 . $H A / A^{-}$للثنائية
 واستتّج النوع الكيميائي الغالب.

2 - إن تشكل حمض اللبن أنثاء الإجهاد العضلي هو سبب الششنج ، بينمأأساسة المرالفق ويّن فعالية) . ومن
 . $37^{\circ} \mathrm{C}$ اللبن مطول أساسي قوري عند أ ـ أكتب معادلة الثفاعل الحاصل . ب ـ أحسب ثابت الثنوانْ لهذا الثّفاعل . ج - علا استُعمال المشروبِ الأساسي لتثفادي التشّنجات العائدة لحمض اللبن .
 . $25^{\circ} \mathrm{C}$ Liع $\mathrm{pH}=2,6$

أ ـ أحسب التركيز المولِي لكل الأفراد الكيميائيةّة المتواجدةَ في هذا المحول .

Ke

التُمرين اللاريع :

أ ـ أدرس حركة هركز عطالة الجسم (S) في المعلم الغاليلي (S)
ب . أوجد إحداثي الثقطة (D) جـ ـ أحسب قَيمة سرعة الجسم (S) لحظة وصوله إلى النقطة (D) (D)

$$
g=10 \mathrm{~m} / \mathrm{s}^{2}: \text { يعطى }
$$

J'amue : التتمربن الخامسس

2 ـ اعط الصيغ الجزيئية نصف المفصلة والإسم اللظامي لكل ناتّج وكذلك للإسشن (E) . 3 ـ أحسب ثُابت النتوازن لهذا التّاعل .

4 الماء

في أي اتجاه تتطور الجملة الكيميائية تلقائيا ؟
 -C $=0,10 \mathrm{~mol} / \mathrm{L}$ بشوارد HO^{-}هو

أ ـ أكتب معادلة الثنفاعل .
ب ـ أحسب كثلة الملح الناتج ، واعط اسمه .
$u_{H j}=1 \mathrm{~g} / \mathrm{mol} ; M_{0}=16 \mathrm{~g} / \mathrm{mol} ; \quad h_{0}=12 \mathrm{~g} / \mathrm{mol} ; M_{K}=39 \mathrm{~g} / \mathrm{mol}:$ يعطى

14/2013: د. Cow
~ ~

 $2 \mathrm{H}_{3} \mathrm{O}_{\text {cas) }}^{+}+2 e_{e}^{\prime}=2 \mathrm{H}_{2} \mathrm{O}_{(e)}+\mathrm{Hz}_{2}(8):$:

$$
2 \mathrm{Al}(s)+6 \mathrm{H}_{3} \mathrm{O}_{(\text {qq })}^{+}=2 \mathrm{Al}\left(\text { aq) }+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{e})+3 \mathrm{H}_{2}(q)\right.
$$

* $1-2 x_{\text {max }}=0 \Rightarrow x_{1 \text { max }}=\frac{1}{2}=0,5$ mol
: re形cerill
* $24 \times 10^{-5}-6 x_{\text {max }}=0 \Rightarrow x_{2}$ max $=4 \times 10^{-5}$ mol
 3+j jo
 $\sigma=0,511-10^{4} x \Rightarrow x=\frac{0,511-\sigma}{10^{4}}=\frac{0,511-0,3}{104}=2,11 \times 10^{-5} \mathrm{~mol}$.

$$
\left[\mathrm{H}_{3} 0^{+}\right]_{(t=6 \mathrm{~min})}=\frac{m}{V}=\frac{24 \times 10^{-5}-6 \times 211 \times 10^{-5}}{20 \times 10^{3}}=0,567 \times 10^{-2} \text { mal/l. }
$$

$$
p H=-\log \left(0,567 \times 10^{-2}\right)=2,2 .
$$

$$
v_{n d}=\frac{1}{V} \frac{d u\left(A e^{3}\right)}{d t}
$$

: 5- السرعةَالعجهبية

$$
M\left(A C^{8 t}\right)=2 x \Rightarrow \frac{d n\left(A e^{3 t}\right)}{d t}=2 \frac{d x}{d t}
$$

$$
\begin{aligned}
& \sigma=0,511-10^{4} x \Rightarrow \frac{d \sigma}{d t}=-10^{4} \frac{d x}{d t} \Rightarrow \frac{d x}{d t}=-10^{-4} \frac{d \sigma}{d t} \text {. } \\
& \text { duc(st) }
\end{aligned}
$$

$$
\begin{equation*}
\frac{d u\left(A A^{\prime}\right)}{d t}=-2 \times 10^{-4} \frac{d \sigma}{d t} \tag{acion}
\end{equation*}
$$

$$
v_{\text {orl }}=\frac{-2 \times 10^{-4}}{V} \cdot \frac{d \sigma}{d t}=\frac{-2 \times 10^{-4}}{V} \times \frac{\Delta \sigma}{\Delta t}
$$

$$
\frac{\Delta \sigma}{\Delta t}=\frac{0,05-0,45}{13}=-0,03 \frac{\mathrm{~s}}{\mathrm{~m} \cdot \mathrm{~min}}
$$

$$
v_{\text {odd }}=\frac{-2 \times 10^{-4}}{20 \times 10^{-3}}(-0,03)=3 \times 10^{-4} \text { mind } / \mathrm{l} \text { min }
$$

11/01äzins

$$
\begin{aligned}
& \sigma(t)=\lambda_{H_{3} O}+\left[\mathrm{H}_{3}{ }^{+}\right]+\lambda \bar{e}[\bar{e}]+\lambda \mathrm{Al}^{3+}\left[\mathrm{Al}^{3+j}\right]-2 \text { - }{ }^{-3} \\
& =35 \times 10^{-3}\left(\frac{24 \times 10^{-5}-6 x}{20 \times 10^{-6}}\right)+7,6 \times 10^{-3} \times 1,2 \times 10^{-2} \times 10^{3}+4 \times 10^{-3} \frac{2 x}{20 \times 10^{-6}} \\
& =42 \times 10^{-2}-10,5 \times 10^{3} x+9,12 \times 10^{-2}+0,4 \times 10^{3} \times \\
& \sigma(t)=0,511-10^{4} x \quad(\mathrm{~s} / \mathrm{m})
\end{aligned}
$$

:

$$
\begin{gathered}
C H_{3}-C H_{2}-C_{-O H}^{=0}+\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}_{-0-C \mathrm{CH}_{2}-C \mathrm{CH}_{3}}+\mathrm{H}_{2} \mathrm{O} \\
K=Q_{R}=1 / 1
\end{gathered}
$$

: E1/2 ن

$$
K=\varphi_{r f}=4
$$

ب- با بت النّ

 $x=0 \Rightarrow y=0 \Rightarrow[\bar{\sim} 1]_{0}=C_{E}=6=1 \mathrm{mmol} / \mathrm{L}: \mathrm{J}_{\mathrm{C}} \mathrm{C}$:Ca ä~
: NaOH Clen or or

$$
\text { [vieo }]=\frac{C a V-X}{V}=C a-\frac{X}{V}
$$

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}_{-0 H}^{=0}+\mathrm{HO}^{-}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-C O O^{-}+\mathrm{H}_{2} \mathrm{O} \\
M_{a}=M_{H 0}^{-}=\mathrm{Cb} \cdot \mathrm{VB} E \\
V_{b E}=\frac{M_{a}}{C b}=\frac{0,7 \times 10^{-3} \times 1}{0,2}=3,5 \times 10^{-3} \mathrm{~L} .
\end{gathered}
$$

$$
=1-0,3=0,7 \frac{\mathrm{mimol}}{\mathrm{~L}}
$$

 :Vb بّ 11/or äsins

$$
\begin{aligned}
& Q_{r i}=\frac{\left[\bar{\omega} \xi_{j}\right]_{i} \cdot[s \sin]_{i}}{\left[\operatorname{cis} J_{i} \cdot[\operatorname{dov}]_{i}\right.}=\frac{C E \times C_{1}}{C_{1} \times c_{a}}=\frac{C_{E}}{C_{a}} \\
& C_{a}=\frac{C_{E}}{C_{r i}}=\frac{1}{1}=1 \mathrm{~m} \cdot \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma(t)=0,511-10^{+4} x \\
& \left\{\begin{array}{l}
t=0 \\
x=0
\end{array} \Rightarrow \sigma_{0}(t=0)=0,511 \mathrm{~s} / \mathrm{m}\right. \\
& t_{f} \Longrightarrow \sigma_{f}=0,511-10^{4} \mathrm{k}_{f}=\sigma_{0}-10^{4} \mathrm{k}_{f} \\
& t=t / 2 \Rightarrow x_{1 / 2}=\frac{x_{1}}{2} \\
& \sigma(t / / 2)=0,511-10^{4} x_{1 / 2}=\sigma_{0}-10^{4} \frac{x f}{2}=\frac{2 \sigma_{0}-10^{4} x_{f}}{2} \\
& \sigma(t / 2)=\frac{\sigma_{0}+\sigma_{0}-10^{4} x_{f}}{2}=\frac{\sigma_{0}+\sigma_{f}}{2} \\
& \sigma(t / 2)=\frac{0,511+0,1}{2} \approx 0,3 \mathrm{~s} / \mathrm{m} \\
& \text {. } t 1 / 2=6 \mathrm{~min} \text { : نر البي }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3}{ }^{t}\right]_{f}=10^{-p H}} \\
& M_{0}(\mathrm{HA})=M(H A)+M\left(A^{-}\right)
\end{aligned}
$$

Crebl es of taniad!
$\frac{\mu_{0}(H A)}{V}=\frac{m(H A)}{V}+\frac{n(A-)}{V} \Rightarrow \frac{c_{a} V_{a}}{V}=[H A]+\left[A^{-}\right]$

$$
[H A]=\frac{C a V_{a}}{V}-[A-]
$$

$$
\begin{aligned}
& \left.\left[A^{-}\right]=C_{j \in C i=1} H A\right]=\frac{C B V_{b}}{V} \\
& \left.{ }^{[H A}+A\right]_{f}=\frac{C a V a}{V}-\frac{C b V b}{V} \\
& c_{a} V_{a}=c b V b E
\end{aligned}
$$

$$
[H A]_{f}=\frac{c b V_{b E}}{\frac{c b V b}{V}-\frac{c b V b}{10} L^{-p H}}
$$

$$
\begin{aligned}
& K_{a}=\frac{\frac{C b V b}{V} \times 10^{-P H}}{\frac{C b V D E}{V}-\frac{C b V b}{V}}=\frac{C b \cdot V_{b} \times 10^{-P H}}{C b \cdot V_{D E}-C b V b}=\frac{V_{b} \times 10^{-P H}}{V_{b E}-V b} \\
& K_{a}\left(V_{b E}-V_{b}\right)=V_{b} \cdot 10^{-p H} .
\end{aligned}
$$

 $I_{0}=4,8 \times 0,05=0,24 \mathrm{~A}$.
 $0,68 I_{0}=0,63 \times 0,24=0,1512 \mathrm{~A}$
$\tau=10 \mathrm{~ms}$: © © البِّ \therefore a

$$
\begin{aligned}
& U_{A C}=U_{A B}+U_{B C} \\
& U_{a}=U_{b}+U_{R} \\
& E=L \frac{d i}{d t}+r i+R i=L \frac{d i}{d t}+(R+r) i
\end{aligned}
$$

$$
\begin{aligned}
& r=\frac{E}{I_{0}}-R=\frac{6}{0,24}-17,5=7,5 \Omega \\
& \tau=\frac{L}{R+r} \Rightarrow L=\tau(R+r)=10 \times 10^{-3}(17,5+7,5)=0,25 H \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& U_{O}=U_{b}+U_{R}
\end{aligned}
$$

$$
\begin{aligned}
& E=L \frac{d i^{\prime}}{d t}+(R+r) i \Rightarrow \frac{d i^{\prime}}{d t}+\frac{R+r}{L} i=\frac{E}{L} \\
& \frac{d i}{d t}+\frac{R+r}{L} i=\frac{R+r) I_{0}}{L} \Rightarrow \frac{d i^{\prime}}{d t}+\frac{1}{\tau} i=\frac{I_{0}}{\tau} .
\end{aligned}
$$

11/03 هـة

$$
\begin{aligned}
& \frac{d i}{d t}=\frac{I_{0}}{\tau} e^{-t / \tau} \\
& i(t)=I_{0}\left(1-e^{-t / \tau}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{I_{0}}{\tau} e^{-t / \tau}+\frac{I_{0}}{\tau}-\frac{I_{0}}{\tau} e^{-t / \tau}=\frac{I_{0}}{\tau} \Rightarrow \frac{I_{0}}{\tau}-\frac{I_{0}}{\tau_{0}}=0 \\
& U_{b}=U_{A B}=L \frac{d i^{\prime}}{d t}+r i \\
& \text { 的 } \\
& \text { : 呈 - } \\
& U A B=L \frac{I_{0}}{\tau} e^{-t / \tau}+r I_{0}-r I_{0} e^{t / \tau} \\
& U_{A B}=\frac{R+r}{L} \times L I_{0} e^{-t / \tau}+r I_{0}-r I_{0} e^{-t / \tau}=R I_{0} e^{-t / T}+r I_{0} e^{-t / \tau}+r I_{0}-r I_{0}^{-t / \tau} \\
& U_{A B}=R I_{0} e^{-t / \tau}+r I_{0}=\left(R e^{-t / \tau}+r\right) I_{0} . \\
& t=0: U_{A B}(0)=(R+r) I_{0}=E=6 \mathrm{~V} \\
& t \rightarrow \infty: \lim _{t \rightarrow \infty} e^{-t / T}=0 \Rightarrow U_{A B}(\alpha)=r I_{0}=7,5 \times 0,24=1,8 \mathrm{~V} .
\end{aligned}
$$

$$
\begin{aligned}
& \tau=\frac{L}{R+r} \Rightarrow r=(R+r) \tau \cdots(2) \\
& a=\frac{\Delta L}{\Delta \tau}=\frac{0,5-0,1}{(20-4) 10^{-3}}=\frac{0,4}{16 \times 10^{-3}}=25 \mathrm{H} / \mathrm{s} . \\
& r=a-R=25-17,5=7,5 \Omega .
\end{aligned}
$$

 ${ }_{\frac{40}{z}} \mathrm{~K} \xrightarrow{\longrightarrow}{ }^{40}{ }^{40} \mathrm{Ar}+{ }^{0}{ }^{0}$ 18 倠：

$$
\begin{aligned}
& \begin{array}{l}
{ }^{40} K \xrightarrow{Z} K \xrightarrow{40}+1=199 \\
18 \mathrm{Ar}+1{ }^{\circ} \mathrm{e}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Elib }=1,6 \times 10^{-13} \\
& N_{k}(t)=N_{0} e^{-\lambda t} \\
& \text { وْ }
\end{aligned}
$$

$$
\begin{aligned}
& N_{A_{r}}(t)=N_{\alpha}\left(t \tilde{e}_{i=1}^{t}(t)=N_{0}-N_{k}(t)=N_{0}-N_{0} e^{-\lambda t}=N_{0}\left(1-e^{-\lambda t}\right)\right.
\end{aligned}
$$

صنعة 11／04

$$
\begin{gathered}
\frac{N_{\operatorname{Ar}}(t)}{N_{K}(t)}=\frac{N_{0} e^{-\lambda t}}{N_{0}\left(1-e^{-\lambda t}\right)}=e^{1 t}-1 . \\
\lim _{t \rightarrow \infty}\left(e^{-\lambda t}-1\right) \rightarrow \infty
\end{gathered}
$$

(ע) صر با 14

$$
\begin{aligned}
& t=\frac{\ln 11}{\lambda}=\frac{t / 2 \ln 11}{\ln 2}=4,5 \times 10^{9} \text { ans }
\end{aligned}
$$

जद्ध जैं selew tos $\left(s_{2}+s_{1}\right)$ aloel

$-P_{1} \sin \alpha-f+T_{1}=m_{1} a^{\prime} \cdots(1)$

$$
\overrightarrow{P_{2}}+\overrightarrow{p_{2}}=m_{2} \vec{a}
$$

(se) pall -
$p_{2}-T_{2}=m_{2} a$

- … (2)
- $T_{1}=T_{2}: a^{2} \cdots i{ }^{2}$ M位
$P_{2}-P_{1} \sin \alpha-f=\left(m_{1}+m_{2}\right) a \quad:$ (2) (1) (1)
$m_{2} g-m_{1} g \sin \alpha-f=\left(m_{1}+m_{2}\right) a$

$$
a=\frac{g\left(m_{2}-m_{1} \sin a\right)-f}{m_{1}+m_{2}}=e \underline{t_{e}}
$$

$$
T_{2}=T_{1}=T=m_{2}(g-a)
$$

: (2) ännelico

$a\left(\mathrm{~m} / \mathrm{s}^{2}\right.$	1,11	3,38	4,34	5,00	6,25
$T(N)$	4,44	5,29	5,66	5,90	6,34

$T=f(a):$:

11/05 تien

$$
T=m_{1} a+\left(m_{1} g \sin \alpha+f\right) \text { (II) (II) (II) }
$$

$$
c_{1}=m_{1}=0,375 \mathrm{~kg}
$$

$$
c_{2}=f+m_{1} g \sin \alpha \Rightarrow f=2,12 N .
$$

$\xlongequal{\text { Civil ciscos ~ }}$

$-1 . p$	$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})=02(\mathrm{~g})$	$+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	
$\epsilon=0$	CV	0	0
t	$\mathrm{CV}-2 X$	X	$2 X$
$t f$	$\mathrm{CV}-2 \mathrm{Kf}_{f}$	$X f$	$2 X f$

$t(\mathrm{~min})$	0	5	10	15	25	35	55	75
$\left[+\mathrm{H}_{2} \mathrm{O}_{2}\right] \times 10^{-3} \mathrm{mw}$								
L	10	8,75	7,67	6,72	5,20	4,03	2,47	1,57

 $n\left(H_{2} O_{2}\right)(t)=c V-2 x$
$c=100$
 : - 1 /2

 11/06

$$
\begin{aligned}
& \frac{d\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{d t}=0-2 \frac{d\left[\mathrm{O}_{2}\right]}{d t}=-2 v_{\text {val }}\left(\mathrm{O}_{2}\right) \\
& -v_{v a l}\left(H_{2} \mathrm{O}_{2}\right)=-2 v_{\operatorname{val}}\left(\mathrm{O}_{2}\right) \Rightarrow v_{v a l}\left(\mathrm{O}_{2}\right)=\frac{v_{\text {val }}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)}{2} \\
& v_{\text {vol }}\left(O_{2}\right)=\frac{1,5 \times 10^{-4}}{2}=7,5 \times 10^{-5} \text { mol. } L^{-1} \cdot \text { min }^{-1} \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& m\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)(t)=C V-2 \frac{V_{\mathrm{sin}}}{V_{m}}=C V-2 \frac{V_{0} \mathrm{~V}_{2}}{24000} \\
& {\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{(\epsilon)}=\frac{\mu\left(\mathrm{H}_{2} \varepsilon_{2}\right)(t)}{V}=C-\frac{V_{O_{2}\left(\mathrm{Cn}^{3}\right)}^{12000}=10^{-2}-\frac{V_{O_{2}}\left(\mathrm{Can}^{3}\right)}{12000}, ~}{120}} \\
& m(0,2)=x=\frac{V_{02}}{V_{m}}
\end{aligned}
$$

$M\left(O_{2}\right)=\frac{V_{02}}{V_{m 1}}=\frac{24}{24000}=10^{-3}$ mol $: \mathrm{Fecl}_{3}$ detes is 1 ml a ¿cip！ $v_{\text {muy }}=\frac{\mu(O 2)}{\Delta t}=\frac{10^{-3}}{10}=10^{-4} \mathrm{~mol} \cdot \mathrm{~min}^{-1}$
$v_{\text {moy }}=\frac{m\left(\mathrm{O}_{2}\right)}{\Delta t}=\frac{10^{-3}}{5}=2 \times 10^{-4}$ mol $\cdot \mathrm{min}^{-1}$ ．
 dsteill

$$
x_{\text {max }}=\frac{2 \times 10^{-3} \times 1}{2}=10^{-3^{2}} \operatorname{mol}
$$

$$
V_{0_{2}}=X_{\text {max }}^{2} K V_{m}=10^{-3} \times 24000=24 \mathrm{ml} .
$$

列敞 هِ ，

$$
\begin{aligned}
210 \\
84
\end{aligned} \mathrm{P}_{0} \xrightarrow{206} \mathrm{~Pb}+{ }_{z 1}^{A} X
$$

$t(\dot{\theta})$	0	40	80	120	160	200	240
$-\ln \frac{N}{N_{0}}$	0	0,2	0,4	0,6	0,8	1,0	1,2

ر品

$-\ln \frac{N}{N_{0}}=a t$
．．．（1）：

$$
N=N_{0} e^{-\lambda t} \Rightarrow \frac{N_{0}}{N_{0}}=e^{-\lambda t}
$$

：
$\ln \frac{N}{N_{0}}=-\lambda t \ln e=-\lambda t$
$-\ln \frac{N}{N_{0}}=\lambda t$
$\lambda=a=\frac{\Delta\left(-\ln N_{0}\right)}{\Delta t}$
：（2）（1）

$$
\lambda=\frac{1-0,2}{200-40}=\frac{0,8}{160}=5 \times 10^{-3} j^{-1}
$$

$$
\lambda=\frac{\ln 2}{t / 1 / 2} \Rightarrow t / 2=\frac{\ln 2}{\lambda}=\frac{0,693}{5 \times 10^{3}}=138,6 j
$$

11／07
 $N=N_{0} e^{-\lambda t} \Rightarrow \frac{N}{N_{0}}=e^{-\lambda t}=\frac{1}{100} \Rightarrow-\lambda t=-h e 100$ $t=\frac{\ln 100}{\lambda}=\frac{4,605}{5 \times 10^{-3}}=921 \mathrm{j}$.

$$
\begin{aligned}
& E l=\Delta m \cdot c^{2}=\left[z m p+N m_{n}-m\left(\sigma_{6}^{\prime \prime}()\right] c^{2}\right. \\
& E l=[(6 \times 1,00728)+(8 \times 1,00866)-14,0065] \times 1,66 \times 10^{27} \times 9 \times 10^{16} \\
& E l=1,59 \times 10^{-11} \mathrm{~J}=99,4 \mathrm{MeV} \\
& E_{A}=\frac{E l}{A}=\frac{99,4}{14}=7,10 \mathrm{MeV} / \mathrm{huc} \\
& \bar{E}_{A}=\frac{E_{l}}{A}=\frac{1605,88}{210}=7,65 \mathrm{Mev} / \text { nuc: } 210 \text { con'dill anill, }
\end{aligned}
$$

: 手

$$
\mathrm{HA}_{\mathrm{a}}(\text { aq })+\mathrm{H}_{2} \mathrm{O}(e)=\mathrm{A}_{-(0),}+\mathrm{H}_{3} \mathrm{O}^{+}(a) .
$$

$$
K a=\frac{\left[A^{-}\right]_{f}\left[H_{3}{ }^{+}\right]_{f}}{[H A]_{f}}
$$

$$
\left.\frac{C A^{-} e_{e q}^{\prime}}{C+A A_{e q}}=10^{2,8}=6,31 \times 10^{2} \Rightarrow C A^{-}\right]_{e ́ g}=6,31 \times 10^{2}(\mathrm{CHA}]_{e ́ g}^{\prime}
$$

$$
\begin{aligned}
& K=\frac{10^{-3,9}}{2,4 \times 10^{-14}}=5,25 \times 10^{9} .
\end{aligned}
$$

 - $10^{-"}$ 路 a "

$\mathrm{H}_{2} \mathrm{O} / \mathrm{HA}^{-} \mathrm{C} \mathrm{A}^{-} \stackrel{\mathrm{HO}}{\mathrm{H}} \mathrm{C} \mathrm{H}_{3} \mathrm{O}^{+}$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{o}^{+}\right]_{f}=10^{-\mathrm{PH}}=10^{-2,6}=2,5 \times 10^{-3} \mathrm{~mol} / \mathrm{L}} \\
& C H \bar{o}_{f}=\frac{K_{e}}{\left.C H_{3}\right]_{f}}=\frac{10^{-14}}{10^{-8,6}}=10^{-11,4}=3,98 \times 10^{-12} \text { mol/ } \mathrm{L}
\end{aligned}
$$

$\left[\mathrm{A}^{-}\right]_{f}+\left[\mathrm{H}_{-}^{-}\right]_{f}^{+}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{f}$

11/08 aces

$$
\begin{aligned}
& {\left[\mathrm{A}^{-}\right]_{f}=\left[\mathrm{H}_{3}{ }^{+}\right]_{f}-\left[\mathrm{H}_{0}^{-}\right]_{f}} \\
& \left.C \mathrm{H}_{0}\right]_{f} \ll\left[\mathrm{H}_{3}{ }^{\circ}\right]_{f} .
\end{aligned}
$$

$$
\left[\mathrm{A}^{-}\right]_{f} \approx\left[\mathrm{H}_{3}{ }^{t}\right]_{f}=2,5 \times 10^{-3} \mathrm{~mol} / \mathrm{L} .
$$

$$
\left.C \mathrm{HA}]_{f}=C_{A}-C A-\right]_{f}=5 \times 10^{-2}-2,5 \times 10^{-3}=4,75 \times 10^{-2} \mathrm{~mol} / \mathrm{L} .
$$

$$
\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{u}{V}=\frac{m^{+}}{M V}=\frac{1000}{18 \times 1} \simeq 55,55 \mathrm{~mol} / \mathrm{L} .
$$

$K a=\frac{\left[H_{3} 0\right]_{f}[A]_{f}}{\left[1+A J_{f}\right.}=\frac{\left(2,5 \times 10^{-3}\right)^{2}}{4,95 \times 10^{-2}}=1,3 \times 10^{-4}$
PKa $=-\log K a=3,9$.

$$
p K a=2,6-\log \frac{(1,4] p}{2,5 \times 10^{-3}}=3,9 .
$$

:
\therefore C C \&

(s) (s)

- (c) (A)

$$
E_{C_{A}}+w(\vec{P})+w_{A c}(\vec{R})=E_{C C}
$$

$$
W_{A C}\left(\frac{C C}{R)}=0, E_{C A}=0\right.
$$

$$
\begin{aligned}
& w_{A C}\left(\frac{A L}{R}\right)=0, E_{C A}=0 \\
& m g h=\frac{1}{2} m_{c}^{\prime} v_{c}^{\prime} \quad h=\frac{r}{2}=0 \bar{c} \\
& =2 g h=2 q \frac{r}{c}=g \times r
\end{aligned}
$$

$$
v_{c}=\sqrt{g k r}=\sqrt{10 \times 10}=10 \mathrm{~m} / \mathrm{s}
$$

$$
\sum \overrightarrow{F_{e x}}=m \overrightarrow{a_{c}} \Leftrightarrow \overrightarrow{p_{1}}+\vec{R}=m \overrightarrow{a_{c}}
$$

$-P_{z}+R=m a_{n}$
: $\overrightarrow{z z}$, بلـ
$-m g \cos \theta+R=m \frac{v_{c}^{e}}{2}$

$$
R=m\left(g \cos \theta+\frac{v_{c}^{2}}{r}\right) ; \quad \cos \theta=\frac{\frac{r}{2}}{r}=\frac{1}{2} \Rightarrow \theta=60^{\circ}
$$

$$
R=0,4\left(10 \times \frac{1}{2}+\frac{100}{10}\right)=6 N .
$$

($\overline{0}, \vec{i}, \vec{q})(-\vec{l})$ (c)

$$
\begin{aligned}
\sum \overrightarrow{F_{e x t}} & =m \overrightarrow{a_{c}} \Leftrightarrow \overrightarrow{a_{a}}
\end{aligned}=m \overrightarrow{a_{a}} \Rightarrow m \vec{g}=m \overrightarrow{a c}
$$

11/09aies

a obinu anẽises argel $a_{y}(t)=\frac{d v y}{d t}=-g=c t: \overrightarrow{a y}, \rho b 1$.

$$
\begin{align*}
& \overrightarrow{o M}_{0}(t=0) \left\lvert\, \begin{array}{l}
x_{0}=0 \\
y_{0}=\frac{r}{2}=5 \mathrm{~m} .
\end{array}\right. \\
& \vec{v}(t) \left\lvert\, \begin{array}{l}
v_{x}(t)=\frac{d x}{d t}=v_{c} \cos \theta \\
v_{y}(t)=\frac{d y}{d t}=-g t+v_{c} \sin \theta
\end{array}\right. \\
& \overrightarrow{o M}(t) \left\lvert\, \begin{array}{ll}
x(t)=v_{c} \cos \theta \times t \\
y(t)=-\frac{1}{2} g t^{2}+v_{c} \sin \theta+y_{0}
\end{array}\right. \tag{2}
\end{align*}
$$

$t=\frac{x}{v_{c} \cos \theta}$
: (1) cis is hub) at le
$y(x)=-\frac{g}{2 v_{c}^{2} \cos ^{2} \theta} x^{2}+\tan \theta \times x+y_{0}: i$ (2) is in is

$$
y(x)=-0,2 x^{2}+1,73 x+5
$$

:

$$
\begin{gathered}
y_{\Delta}=0 \quad D=0 \\
y_{\Delta}=-0,2 x_{\Delta}^{2}+1,73 x_{\Delta}+5=0 \quad D\binom{0}{2,275 \mathrm{~m}} \\
x_{\Delta}=2,275 \mathrm{~m} .
\end{gathered}
$$

$$
\begin{aligned}
& E_{c c}+w(\vec{P})=\dot{E}_{c \Delta} \\
& \frac{1}{2} m v_{c}^{2}+m g h=\frac{1}{2} m v_{\Delta}^{2} \Rightarrow v_{\Delta}^{2}=v_{c}^{2}+2 g h ; h=\frac{r}{2}
\end{aligned}
$$

$$
v_{\Delta}=\sqrt{v_{c}^{2}+2 g h}=\sqrt{v_{c}^{2}+2 g \times \frac{r}{2}}=\sqrt{v_{c}^{2}+g \times r}
$$

$$
v_{\Delta}=\sqrt{100+100}=\sqrt{200} \approx 14,14 \mathrm{~m} / \mathrm{s} .
$$

-(E) (E) 11/10 ains

$$
\begin{aligned}
& \vec{a}(t) \left\lvert\, \begin{array}{l}
a_{x}(t)=0 \\
a_{y}(t)=-g
\end{array}\right. \\
& v_{c}(t=0) \left\lvert\, \begin{array}{l}
v_{c x}=v_{c} \cos \theta \\
v_{e y}=v_{c} \sin \theta
\end{array} \quad\right.: t=0 \quad a d \cdot v / i v \\
& a_{x}(t)=\frac{d v_{x}}{d t}=0 \Rightarrow v_{x}=c \frac{t}{x}: \overrightarrow{O x}, \overrightarrow{L_{1}} 1
\end{aligned}
$$

$$
n(E)=\frac{\sin (E)}{M(E)} \Rightarrow M(E)=\frac{\operatorname{sen}(E)}{M(E}=\frac{10,2-9,18}{0,01}=102 \mathrm{~g} / \mathrm{mol}
$$

$$
M(E)=14 n+32=102 \Rightarrow \mu=5
$$

$$
r=\frac{\mu_{f}(\dot{l g})}{m_{0}(E)} \times 100=\frac{d_{20} M(E)}{\mu_{0}(E)} \times 100=\frac{\frac{9,18}{102}}{\frac{102}{102}} \times 100=90 \%
$$

 CH3 2
!

مسِا نوا ت نـ،
-3

:

$$
\phi_{r}=\frac{m\left(\omega_{0} \rho\right) \times m(\mathrm{~s}, \hat{s})}{m(\bar{\omega} j) \times m(56)}=\frac{0,08 \times 0,09}{0,01 \times 0,02}
$$

:

$$
\begin{aligned}
& M_{\text {Hecok }}=1+12+32+39=84 \text { geflmol. } \\
& m=0,1 \times 10^{-1} \times 84=0,84 \mathrm{~g} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{f}(E)=n_{f}(s b)=0,01 \text { mol. } \\
& Q_{r f}=K=\frac{[\operatorname{coie}]_{f}\left[0 g J_{f}\right.}{[\bar{w}]_{f} \cdot[\sin]_{f}}=\frac{m_{f}(\sin) \times m_{f}(H, \xi)}{m_{f}\left(\omega_{f}\right) \times m_{f}(16)}=\frac{(0,09)^{2}}{(0,01)^{2}}=81 \\
& 4
\end{aligned}
$$

