الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

دورة: مــاي/2015

امتحان البكالورب التجريبية

ثانوية : ماحي محمد ..

الشعبة: علوم تجريبية ثانوية: ماد البلدة

المحة: 03 ساعـــات ونج

اختبار في ماسة: العامر الغيرائية على المرشح أن يختار أحد المرضوعين التاليين:

المسموضوع الأول: (20 نقطة)

التمريــــن الأول:(04 نقاط)

نضع في بيشر 50mL من محلول حمض كلور الماء تركيزه المولي (c) و قطعة من معنن المغنيزيوم (Mg) كتلتها (m)، فينطلق خاز ثنائي الهيدروجين و تشكل شوارد المغنيزيوم (Mg²⁾.

- √1- أكتب الثنانيتين (Ox/Red) للتفاعل الحلاث.
- 2- أكتب معادلة الأكسدة الار حاصة
- -3- كيف يمكن الكشف عن العاتر المتصاعد تجريبيا؟
- 4- عند اللحظة t=0 تم تتبع تطور تركيز شوارد الهيدرونيوم في المحلول بدلالة الزمن، فتم الحصول على النتائج كما في الحدال الذا

**						ون سسي.	ے ہے۔	- Carrier 6
t(min)	. 0	1	2	3	5	7	9	10
H ₃ O ⁺ (mol/L)	0,60	0,46	0,38	0,32	0,25	0,22	0,20	0,20

١١/ أذكر طريقة تجريبية لقياس تطور التركيز المولي لشوارد الهيدرونيوم في المحلول السابق.

 ψ ارسم المنحنى البياني $(m_{\rm p}) = [\pi_{\rm p}]$ ، ثم استنج التركيز المولي $m_{\rm p}$ لمحلول حمض كلور الماء.

)، ثم أحسب قيمتها عند اللحظة: (min) t=0

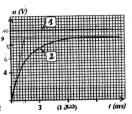
ر 5- أحسب كتلة المغنيزيوم (m).

تعطى: M_(Mg) = 24g/mol

التمرين الثاني:(04 نقاط)

من أجل قطعة جليدية موجودة على ارتفاعات كبيرة من سطح الأرض فلا توجد تلك الديمومة مما يودي إلى تناقس نسبة الكلور المشع مع مرور الزمن. ان معرفة نصف عمر $^{36}C\ell$ معرفة نصف عمر $^{36}C\ell$ و كميته في قطعة الجليد يمكن من تحديد عمر ها.

- 1 أعط مكونات نواة الكلور 36
 - 2 أعط تعريف النظائر.
 - 3 ما معنى نه أة مشعة ؟
- 4 إن تفكك نواة الكلور 36 يعطى نواة أرغون مستقرة رمزها مهرُّهُ.
- أ أكتب معادلة تفكك نواة الكلور 36 مذكرا بقوانين الانحقاظ المستعملة .
- ر ب أذكر اسم الدقيقة المنبعثة.
 - 5 أذكر قانون التناقص الإشعاعي.
 - 6 عرف زمن نصف العمر
 - 7 أحسب ثابت النشاط الاشعاعي (2).
- 8 من أجل إيجاد عمر قطعة جليدية (_{it}) ذات كتلة (m)مستخرجة من جبل جليدي حيث لا تحتوي إلا على (75%) من أنوية الكلور 36 بالنسبة لقطعة جليدية حديثة لها نفس الكتلة .
 - أ أوجد النسبة $\frac{N(t_1)}{N_0}$ من أجل القطعة الجليدية المدروسة .
- ب باستعمال قانون التقاقص الإشعاعي أثبت أن الزمن (t_i) القطعة الجليدية المدروسة يمكن كتابت ه بالشكل التالى: $\frac{N(t_i)}{N_0}$ $\frac{1}{N_0}$ $\frac{1}{N_0}$


التمرين الثالث:(04 نقاط)

نتألف دارة كهربانية من مولد ثليت التوتر قوته المحركة الكهربانية E ،و وشيعة ذاتيتها L, و مقاومتها الداخلية م ناقل أوسي مقاومته R=980 ، راسم اهتراز بذاكرة.

> 1-فقلق القاطعة فيظهر على شاشة راسم الاهتزاز المهيطي البيانين(1) و (2) (الشكل 1) مديث يمثل البيان(1) تغيرات التوتر بين طرفي الموادع،و البيان(2) يمثل تغيرات التوتريه بين طرفي التاقل ادارة

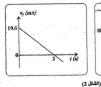
> > / ارسم المخطط الموافق للدارة الكهربانية

ب اكيف يجب ربط راسم الاهتزاز المهبطي بالدارة حتى نتمكن من الحصول على البيانين (1) و (2).

رُ **جـ/ا**كتب المعادلة التفاضلية التي تعبر عن شدة التيار (p) الماز بالدارة، و أعط عبارة _وثلبت الزمن.

د/ اعتمادا على هذين البيانين أوجد:

- القوة المحركة الكهربائية للمواد.
- شدة التيار الكهرباتي في النظام الدائم.
 المقاء مة الداخلية لله شبعة
 - المعاومة الداخلية
 ذاتية الوشيعة


2-نفتح الآن القاطعة

أراكتب المعادلة التفاضلية التي تعبر عن شدة التيار () المار في الدارة.

ب/بين أن العبارة أ (e) = (a) حل لهذه المعادلة التفاضلية

التمرين الرابع:(04 نقاط)

نقذف جسم بسرعة ابتدائية ، y يصنع شعاعها مع الأفق زاوية ، تتغير القيمتان العبريتان للمركبتين الأفقية ، y و الشاقولية , y لشعاع سرعة الجسم ~ بدلالة الزمن ، وفق البيانين التاليين(الشكل 2)

- اوجد المعادلتين الزمنيتين لكل من ٧ و ٧.
- 2- اعتمادا على البيانين استنتج:
 - شدة شعاع سرعة القنف .v.
 - زاویة القذف α.
 - شدة شعاع حقل الجانبية الأرضية g
 - 3- المدى الأفقي للقذف يع.
- 4- أوجد أقصى ارتفاع H يبلغه الجسم بالنسبة للمستوى الأفقى الذي قنف منه.

التمرين الخامس:(04 نقاط)

تحتري الأزهار نبات ملكة البراري على حمض ساليسيليك ذي الخصائص المصنانة لملاتهاب و مسكن لآلام المفاصل صديقته العامة HOC_CH₄COOH و نزمز له لختصارا بـ AH بحديث أساسه المرافق "A يعتل HOC_cH₂COO" نحضر محلول لحمض ساليسيليك تركيزه المولي $C_o=10^{-2}$ و حجمه $V_o=100ml$ ، نقيس قيمة الد $V_o=100ml$ فنجدها و

1- اكتب معاذلة تاعل حسن سالسيليك مع الماء ؟

2-أنشئ جدول تقدم التفاعل ؟

3-عرف ثم أحسب نسية التقدم النهائي ، ماذا تستنتج ؟

4- احسب ثابت التوازن x ، هل يتعلق بالشروط الابتدائية ؟

5-نريد التأكد من قيمة التركيز لحمض ساليسيايك تجاري مكتوب على علبته (100g/1) لهذا نمدده 10 مرات ثم ناخذ حجم 20m1 من المحلول الممدد و نعايره بمحلول هيدروكسيد الصوديوم (407+ 106) تركيزه

المولى الشكل 3) فنحصل على البيان الموضح في (الشكل 3)

أكتب معادلة تفاعل المعايرة، ثم عين إحداثيات نقطة التكافؤ؟

ب أحسب تركيز الحمض الممند C_a ثم استنتج تركيز المحلول الأصلي C_a هل الكتابة (100g/ D_a) محيخة? عــــــر .

ج. اختر من بين الكواشف الملونة التالية الكاشف المناسب لهذه المعايرة مع التعليل؟

الكافف العلون مجال تغيره اللوتي المياتين [4.4 – 1.5] المياتين [4.4 – 1.5] المياتين [7.0 – 1.5] المياتين [8.8 – 8.7] المياتين المياتين [8.8 – 8.7] المياتين المياتين [8.7 – 6]

pΗ																							<u>d</u>	pH '	Ì
7		-	F								1											-			l
																									l
*		1	1			-					1											-	_	_	ł
			1													-				-					l
	-		1			1			1	1	1	1		. 3	1									Ċ	I
				-								1.			1							- 3			l
						-	1		1		1	-									1				l
-				1.6	F			-	1	1	1	1		1.7	-		1.		Ι.						l
-			1						F	T	L	J-	1						.00	-					I
		*	1	-	1	1	1		1		1		1			-			Ι.,	1					I
				1	1	1	1			1	1	1	T.	U		1			1			T.			l
-		-	1	1	†	1		1			1	-	-	-	-		-	-	Ť-	-					I
-		Ė	H	Ħ	H	-	1		1	1	1		-				1	T-		1			1		1
F		-	1	1	1	t	1	-		t-	1	-	-		1	-	-		Г	1		1			I
-	-		1	1	1	1	1	1	1	1	-	1	-		1	1	1	1	-	1	-	1			1

(الشكل 3)

شطی: 138g.mol-1

السموضوع الثات __: (20 تقطة)

التمرين الأول: (04 نقاط)

1- يوجد في مخبو عند لحظة t = 0 عينة من الأزوت 13 العشع النقي كتلتها ug 1,49 و الذي نصف حياته 10 نقائق ، أو حد

√أ- عند أنوية الأزوت الموجودة عند اللحظة 0 = t . (يعطى 1- Na = 6,02 . 10²³ mol · ب- النشاط الابتدائي عند اللحظة 0 = 1.

V - النشاط بعد ساعة.

د- الزمن اللازم لكي ينقص النشاط إلى واحد بكريل (A = 1 Bq) .

2- تحتوي صغور القمر على البوتاسيوم K المشع و الذي يتحول إلى الأرغون Ar الله ملا

أ- أكتب معادلة التحول النووي الحادث.

ب ما نوع التفكك الحادث، أذكر بعض خصائص الجسيم المنبعث.

جـ- من أجل تعيين تاريخ تشكيل صخور من القمر التي أتي بها رواد الفضاء، أعطى التحليل لعينة منها حجمها 8,1.10⁻³ cm³ من غاز الأرغون في الشروط النظامية ، و 1,67. 10⁻⁸ من اليوتاسيوم.

. الحسب عند أنوية غاز الأرغون Ar الناتجة عن تحليل العينة ،و كذا عند أنوية على، ثم استنتج عند الأنوية الابتدائية للبوتاسيوم عند اللحظة 0 = 1.

■ باعتبار أن العينة المأخوذة تتكون ققط من الأرغون Ar و اليونـلسيوم K . أوجد عمر الصخور. علما أن زمن نصف العمر للبوتاسيوم K هو: t_{1/2} = 1,3.10 ans .

التمرين الثائــــى:(04 نقاط)

الصيغة العامة للاحماض الكريوكسيلية هي CnH2m1COOH

لتحضير محلول (A) لحمض كربوكسيلي تنيب في الماء المقطر كتلة m = 450 mg من هذا الحمض النقي، ونضيف اليه الماء المقطر المحصول على حجم Vo = 500 ml من هذا المحلول .

نَاخَذُ حَجِمًا VA = 10 ml من المحلول (SA) وتعايره يواسطة محلول ماني (SB) لهيدروكسيد الصوديوم . C_B = 10⁻² mol/L تركيزه المولى (Na⁺(aq) + OH⁻ (aq))

نحصل على التُكافِّر (حمض أساس) عند إضافة حجم V_B = 15 ml من المحلول (S_B).

1- تحديد الصيغة الإجمالية للحمض الكربوكسيلي: اكتب معادلة تفاعل المعايرة.

ب-أحسب التركيز المولى CA للمحلول (SA)، ثم بين أن الصيغة الإجمالية له هي CH3COOH.

2. تحديد قيمة الـ pK_{A1} الشتقية (CH₃COOH / CH₃COO) . ناخذ حجما V من المحلول (Ac. , pH = 3.3 عند DH عند DH = 3.3 عند DH عن

اعتمادا على جدول التقدم لتطور المجموعة، عبر عن التقدم النهائي ,x لتفاعل الحمض مع الماء بدلالة

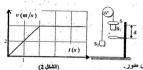
حيث ، CH3COOH] و ما CH3COO] تركيزا النوعين الكيمياتيين عند التوازن .

ب- استنتج قيمة pKa

3- دراسة تفاعل الحمض CH3COOH مع الأساس NH3

n; (CH₂COOH) = n₀ = 3 . 10 ⁴ يناسادة الابتدائية ⁴ (3 . 3 مير) حجم ايحتري على كمية المدادة الابتدائية (3 م n (NH₃) = n₀ ونضيف إليه حجما من محلول الأمونياك يحتري على نفس كمية المادة الابتدائية (NH₃) = (8 .

- أ- اكتب معادلة التفاعل الحادث بين CH3COOH و NH3.
 - ب- احسب ثابت التوازن لا المقرون بمعادلة التفاعل.
- ت. بين أن نسبة التقدم النهائي $\frac{1}{2}$ لهذا التفاعل تكتب على الشكل $\frac{\sqrt{K}}{1+\sqrt{K}}$ =- ، مدانا تستنتج بخصوص هذا التفاعل .


M (O) = 16 g/mol $\,$, M (C) = 12 g/mol $\,$, $\,$ M (H) = 1 g/mol $\,$, $\,$ pK_{A2} (NH₄ $^+$ /NH₃) = 9,2 مطينة النسانة: (40 نقاط) التمرين النسانة: (40 نقاط)

على معز بكرة مهملة الكتلة تدور بحرية حول محور دورانها الأصلي(Δ) يعر خيط مهمل الكتلة غير مرن يحمل في أحد طرفيه جسم $_{\rm IS}$ و يطرفه الاخر جسم $_{\rm IS}$ وأيلها نفس الكتلة $_{\rm IS}$ $_$

1- من السان-

ا / استنتج طبيعة الحركة في الطورين الأول والثاني

- ب/ احسب قيمة التسارع في كل طور.
- 2- أحسب المسافة d بطريقين مختلفتين.
- 3- بتطبيق قانون نيوتن الثاني أوجد عبارة التسارع في كل طور
 - 4- مما سبق استنتج قيمة الكتلة m.
- 4- في أي مرجلة من المرحلتين تحقق مبدأ العطالة مع التعليل ؟

g=10(m/s2) :

التمرين الرابـــــع:(04 تقاط)

نريد دراسة التفاعل الكيمية في الذي يحدث بين حمض الميتغويك HCOOH و كحول صيغته العام C4H₁₀O . نضع في تمانية انابــــيب لخـــتيار مرقـــمة من 01 الــــي 08 نفس المزيج المتكون من 0,2 mol و. الحمـــــض و 0,2 mol ,0 من الكحول ، تدخل هذه الأنابيب في حمام ماني درجة حرارته 180°C .

كل ساعة نخرج أحد هذه الأنابيب بالتركيب من 01 إلى 08 ونعاير كمية مادة الحمض المتبقى فيه بواسط

رقم الأثبوب	01	02	93	. 04	05	06	07	. 08
t (heure)	0	1	2	3	4	5	6	7
mol (حمض)	0,200	0,114	0,084	0,074	0,068	0,067	0,067	0,067
n(أستر) mol						1		

1- أكمل الحدول أعلاه، مبينًا العلاقة المعتمدة

محلول لهيدر وكسيد الصويموم ، فتحصل على الحدول التالي:

- 2- أرسم المنحنى البياني f(t) = (أستر)n . معتمدا السلم التالي: (1cm→0,02mol و 1cm→0,05m)
 - 3- أنشىء جدول تقدم التفاعل
 - 4- استنتج من البيان:
 - أ- سرعة التفاعل عند اللحظة t = 2h باعتبار أن التفاعل بدأ في اللحظة t = 0.
 - ب في أي لحظة يمكن اعتبار أن التحول قد اتتهى ؟
 - د صنف الكحول المستعمل، ثم أكتب مختلف العميغ نصف المفصلة للكحول المستعمل.
 - اكتب معادلة التفاعل المتمذج للتحول الحاصل بين الحمض و الكحول ذي الصيغة المتفرعة . مع تسمية الأستر الناتج
- أ- لو فرضنا أننا أخرجنا الأنبوب رقم 07 عند اللحظة £ 6 أم أضفنا له مياشرة 0,2mol من الأستر المتشكل.
 - في أي جهة تتوقع تطور الجملة الكيميانية مع التعليل؟ حسابًا.

التمرين التجريبي:(04 تقاط)

لمعرفة سعة مكتَّفة سجهولة نستعمل الأجهزة التالية :

- E = 20V : قوته المحركة : E = 20V
- علية مقاء مات متغيرة (R)، مكثقة سعتها ي مجهولة.
- جهاز حاسوب موصول بالدارة من أجل تصحيل تغير التوترات و التيار بدلالة
 - أسلاك التوصيل، قاطعة (٨).

تركيب الدارة RC موضح في (الشكل).

بواسطة حلسوب نسجل تغيرات التوتزين _{بد} و _{يد} بدلالة الزمن انطلاقا من لحظة غلق القاطعة ، و التي نحترها مبدأ الأزمنة.

المنحنيات المحصل عليها من أجل قيم مختلفة المقاومة ج موجودة في الملحق و الذي يُرجع مع ورقة الإجابا

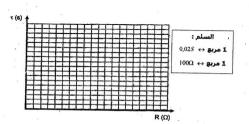
- . $u(t) = E\left(1 e^{\frac{t}{r}}\right)$: اكتب المعادلة التفاضلية بدلالة التوتر u_1 . و بين أنها تقبل حلا من الشكل
 - 2 املاً الجدول (1) الموجود في الملحق واضعًا في كل خانة رقم المنحنى الموافق.
 - ملاحظة (تفس الرقم يمكن أن يظهر عدة مرات) .
- 3 املاً الجدول (2) الموجود في الملحق مع تحديد بياتيا ثابت الزمن ، الموافق لشحسن المكافحة عند 16000 موضحا الطريقة المتبعة (البيان 1) .
 - . R البيان -2 المنحنى الممثل لتغيرات τ بدلالة R
 - استنتج قيمة C مبينا الطريقة المتبعة.

بالتونية في الباكالوريل.

الملحق الخاص بالتمرين التجريبي للموضوع الثاني (يعاد مع ورقة الإجابة)


الحدول (1):

$R(\Omega)$	400Ω	800Ω	12000	16000
المنحني الممثل لـ 🗷				100022
المنحني الممثل لـ 👊				


الحدول (2):

- R(£2)	400Ω	800Ω	1200Ω	1600Ω
$\tau(S)$	0.06	0.14	0.21	-

البيان -1 -

· - 2- (d. d)

