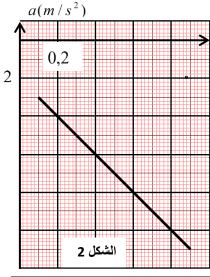


ينسحب جسم صلب (S) كتلته m=1kg على خط الميل الأعظم لمستو خشن (S) يميل عن الأفق C بزاویة lpha ، یخضع الجسم لقوة احتکاك $ec{f}$ معاكسة لجهة حركته و نعتبر شدتها ثابتة. یصل الجسم إلى النقطة عند لحظة t=0 نعتبرها مبدأ للأزمنة بسرعة $v_0=14m/s$ (الشكل 1).

- ندرس حركة الجسم (S) في المعلم (O,x) المرتبط بسطح الأرض .
 - 1. مثل القوى الخارجية المؤثرة على مركز عطالة الجسم.
- 2. بتطبيق القانون الثاني لنيوتن، أثبت أن عبارة تسارع مركز عطالة الجسم
- . (S) عطى بالشكل: $\alpha = -g.\sin \alpha \frac{f}{m}$ عطى بالشكل:
- x(t) و y(t) عطالة الجسم: y(t) و فاصلة مركز عطالة الجسم: y(t)
- لتحديد شدة قوة الاحتكاك نغير في كل مرة قيمة الزاوية lpha ، و نسجل أقصى مسافة d يقطعها d(2) الشكل $a = f(\sin \alpha)$ الجسم على المستوي، مكنت الدراسة التجريبية من رسم البيان f جد قيمة f.
 - .2.4 احسب المسافة المقطوعة d من أجل $lpha=30^{\circ}$ بـ lpha طرق مختلفة. $g = 10m/s^2$


(AB) على طريق مستقيم أفقى m=5kg على طريق مستقيم أفقى مركز عطالته G بقوة $ec{F}$ يمكن تغيير شدتها. و يصنع حاملها زاوية °lpha=60 مع المستوي الأفقي (الشكل 1) ، نعتبر قوى الاحتكاك على الطريق تكافئ قوة وحيدة $ec{f}$ شدتها ثابتة و جمتها معاكسة لجهة الحركة. نكرر التجربة بقيم مختلفة لشدة القوة $ec{F}$ ، و نحسب في كل تجربة الزمن اللازم لقطع المسافة AB . a=f(F) مكنا من رسم بيان تغيرات تسارع مركز العطالة بدلالة شدة قوة الجرa=f(F) (الشكل

- 1. أكتب نص القانون الثاني لنيوتن.
- $a = \frac{\cos \alpha}{m} . F \frac{f}{m}$. بتطبیق القانون الثانی لنیوتن بین أن عبارة التسارع تعطی بالشکل: 2.
 - f . أ. جد قيمة الكتلة f و شدة قوة الاحتكاك . 3

 \cdot ب. جد شدة قوة الجر F' التي من أجلها تكون حركة مركز عطالة الصندوق مستقيمة منتظمة.

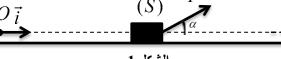
F=8N في حالة الصندوق عند الموضع B في حالة F=8N

AB = 10m : يعطى

الشكل 1

 $\underline{a(m/s^2)}$

0.05


 $\sin \alpha$

rightharpoons F(N)

ت 03

ينزلق جسم صلب S ، كتلته m و مركز عطالته G فوق مستوي أفقي خشن، ننمذج الاحتكاكات بقوة $ec{f}$ شدتها ثابتة. يخضع S خلال حركته إلى $(O,ec{i})$ يصنع حاملها زاوية $lpha=60^\circ$ و شدتها F ، ندرس حركة مركز العطالة G في معلم $(O,ec{i})$ مرتبط بمرجع سطحي أرضي نعتبره غاليلي . O عند اللحظة t=0 ينطبق موضع G مع النقطة t=0(S)

.OA = 20m ، F = 21N ، m = 5kg

الوحدة: تطور جملة ميكانيكية (02) 24/2023 -1. بتطبيق القانون الثاني لنيوتن، بين أن المعادلة التفاضلية لحركة G

$$.\frac{d^2x}{dt^2} = \frac{F\cos\alpha - f}{m} :$$
 تعطى بالشكل:

$$f$$
 جسب قيم G باقش طبيعة حركة

-2 سمحت دراسة تجريبية من تحديد
$$v$$
 سرعة الجسم S في مواضع مختلفة فواصلها x أثناء حركته و رسم المنحنى $v^2=f(x)$ (الشكل x).

$$x(t)$$
 و $v(t)$ من أكتب المعادلة الزمنية لكل من أ


$$v^2=2ax+v_0^2$$
 بين أن العلاقة التي تربط بين v^2 بين أن العلاقة التي تربط بين v^2 و $v^2=2ax+v_0^2$. حيث v_0 السرعة الابتدائية للجسم عند الموضع

.
$$v_0$$
 ج. جد قيمة التسارع a و السرعة الابتدائية

$$\vec{f}$$
 جد شدة قوة الاحتكاك -3

$$A$$
 - بتطبيق مبدأ انحفاظ الطاقة، حدد سرعة الجسم S عند الموضع A تأكد من ذلك بيانيا.

 $v^2(m^2/s^2)$

ت 04

ندرس حركة G مركز عطالة جسم صلب G كتلته m=20kg في المعلم M=20kg المرتبط بمرجع سطحي أرضي نعتبره غاليليا (الشكل 1) يصل الجسم (S) إلى النقطة $\alpha=12^\circ$ بالنسبة للمستوي الأفقى. $\nu_A=5m.s^{-1}$ بالنسبة للمستوي الأفقى.

> 1. بتطبيق مبدأ انحفاظ الطاقة على الجسم بين الموضع A و موضع . G القيمة النظرية لتسارع مركز العطالة a_{th}

A ختار مبدأ الأزمنة t=0 لحظة مرور A من النقطة A

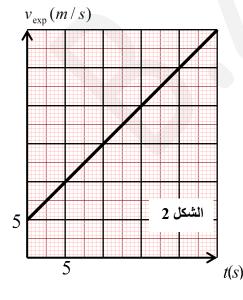
. $v_1 = 25 m.s^{-1}$ المسافة المقطوعة، انطلاقا من النقطة A ، عندما تأخذ سرعة الجسم القيمة -

الشكل 1

 بواسطة برمجية مناسبة، تم استغلال شريط تصوير لحركة الجسم و رسم بیان تغیرات سرعة (S) بدلالة الزمن: $v_{\rm exp}=f(t)$ الشكل (S).

 $a_{
m exp}$ لتسارع مركز العطالة $a_{
m exp}$ لتسارع مركز العطالة -1.3

بطريقتين. $v_{
m exp} = 25 m.s^{-1}$ جد المسافة الحقيقية المقطوعة عند بلوغ سرعة الجسم القيمة $= 25 m.s^{-1}$


هسر الفرق بین $a_{\rm exp}$ و بوجود احتکاکات، حیث یطبق المستوی علی -3.3

 $ec{R}_N$ الجسم $ec{R}_T$ قوة $ec{R}_T$ لها مركبة أفقية $ec{f}$ و مركبة عمودية $ec{R}_N$.ترتبط المركبتين

بالعلاقة $\mu=\frac{f}{R_{ij}}$ بالعلاقة بالغالم معامل الاحتكاك.

 μ بين أنه يمكن كتابة عبارة μ بالشكل بالشكل بالشكل $\mu=rac{a_{th}-a_{
m exp}}{g\coslpha}$ احسب قيمة μ

 $g = 10 m.s^{-2}$ يعطى:

ت 05

 $lpha=30^{\circ}$ کتلته $m_1=400$ أثناء انزلاقه على سطح مستو خشن يميل عن الأفق بزاوية $lpha=30^{\circ}$ لقوة احتكاك نعتبر شدتها ثابتة.

يرتبط S_1 بواسطة خيط محمل الكتلة و عديم الامتطاط يمر على محز بكرة محملة الكتلة بجسم

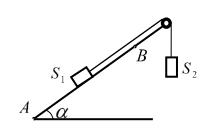
. $m_2 = 400g$ صلب S_2 صلب

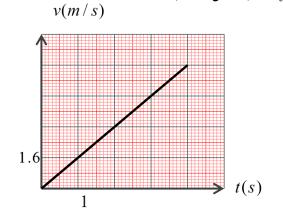
 S_2 (الشكل المقابل) عند اللحظة t=0 عند اللحظة t=0 من النقطة t=0 من النقطة وينطلق الجسم وينطلق الجسم وينطلق المقابل المقابل

1. أ- مثل القوى الخارجية المؤثرة على كل من S_1 و S_2 . S_2 بتطبيق القانون الثاني لنيوتن، حدد طبيعة حركة الجملة.

(الشكل أسفله) v=f(t) بدلالة الزمن S_1 بدلالة النصل أسفله) د مكنت الدراسة التجريبية من رسم منحنى تغيرات سرعة الجسم

 S_1 اعتادا على المنحنى جد قيمة تسارع الجسم ا


AB=3.2m : ب- جد قيمة سرعة الجسم S_1 عند النقطة B


B أحسب المدة الزمنية التي يستغرقها الجسم للوصول إلى النقطة

3. أ- أحسب قيمة شدة الاحتكاك.

ب- أحسب قيمة شدة توتر الخيط.

 $g = 10m/s^2$:

