ثانوية: دحمان خلاف - عين ولمان-

الشعبة: 03 تقني رياضي (ه ط) المدة :120 دقيقة

الفرض الأول للفصل الثالث في مادة هندسة الطرائق

التمرين الأول:

: $\Delta H^\circ_{\rm C}$ عبرفة التغيرات في الأنطالبي $\Delta H^\circ_{\rm L}$ للتفاعلات التالية عند الدرجة

$$\begin{split} &C_{2}H_{4(g)}+ \quad H_{2(g)} \longrightarrow C_{2}H_{6(g)} & \Delta H_{1}^{\circ} = -128,5 \, \text{kJ.mol}^{-1} \\ &C_{2}H_{4(g)}+ \quad 3\,O_{2(g)} \longrightarrow 2\,CO_{2(g)} + 2\,H_{2}O_{(\ell)} & \Delta H_{2}^{\circ} = -1400,7 \, \text{kJ.mol}^{-1} \\ &2\,H_{2(g)} + \,O_{2(g)} \longrightarrow 2\,H_{2}O_{(\ell)} & \Delta H_{3}^{\circ} = -572 \, \text{kJ.mol}^{-1} \end{split}$$

 $\Delta H_{\rm f}^{\circ}({\rm CO}_{2(g)}) = -393, 5 \, {\rm kJ \cdot mol}^{-1}$ يعطى:

 $\Delta H_{\rm f}^{\circ}(C_2H_{6({
m g})}), \Delta H_{\rm f}^{\circ}(C_2H_{4({
m g})}), \Delta H_{\rm f}^{\circ}(H_2O_{2(\ell)}):$ استنتج أنطالبيات تشكل اختراق الإيثان الغازي در التفاعل التالي الذي يمثل احتراق الإيثان الغازي . ${
m II}$

$$C_2H_{6(g)} + \frac{7}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(\ell)}$$

- : $25~^{\circ}$ C during during ΔH°_{comb} lucy lucy lucy ΔH°_{comb} 1.
- $R = 8,314 J.mol^{-1}.K^{-1}$ حيث ΔU حيث الطاقة الداخلية 2.
 - 3. أحسب العمل المنجز W خلال هذا التفاعل.

التمرين الثاني:

مسعر حراري سعته الحرارية $C_{cal}=130 \text{J/K}$ ، كتلة المسعر و هو فارغ $m_1=219,1g$ نضع فيه كتلة من الماء البارد . $T_i=20,4^{\circ}\text{C}$. $T_i=20,4^{\circ}\text{C}$ الابتدائية $m_2=365,7g$ و نقيس درجة الحرارة الابتدائية $m_3=378,7g$ (المسعر و الماء و الحليد) $m_3=378,7g$ درجة حرارتما $m_3=378,7g$ ثن من جديد الجملة (المسعر و الماء و الحليد) $m_3=378,7g$ نقيس درجة الحرارة عند الاتزان $T_f=13,6^{\circ}\text{C}$.

- 1. احسب الحرارة النوعية لإنصهار الجليد Lf.
- ΔH_{fus} استنتج أنطالبي المولي لإنصهار الجليد 2.
- ΔH_{fus} التفاعل انصهار الجليد موضحا أمامه أنطالبي هذا التفاعل Δ

 $m T_i=22.5~^{\circ}C$ نضع داخل مسعر حراري m ML 100 من NaOH تركيزه m ML m 100~mL ونقيس درجة الحرارة الابتدائية m 100~mL نضيف m 100~mL من m 100~mL تركيزه m 100~mL

- $T_f = 28$ °C قيس درجة الحرارة النهائية -
- 1- أحسب الحرارة المولية للتعديل Qp ثم عرفها؟
 - 2- استنتج الأنطالبي المولي للتعديل AH_{neut} .
- 3- أكتب معادلة التفاعل موضحا عليها الحرارة المولية.

$$C_{Cal} = 200.46 \text{ J.K}^{-1}$$
 $C_e = 4.185 \text{ J.K}^{-1}.g^{-1}$ يعطى:

التمرين الثالث:

🕶 يتفكك خماسي أكسيد النتروجين وفق المعادلة التالية :

$$N_2O_5 \longrightarrow 2NO_2 + \frac{1}{2}O_2$$

◄ متابعة تغير تركيز خماسي أكسيد النتروجين مع مرور الزمن أعطى النتائج التالية :

t (min)	0	40	80	120	160
[N2O5]mol.L1	0,100	0,086	0,074	0,063	0,054

- 1- بين أن التفاعل من الرتبة الأولى.
 - 2- أوجد بيانبا ثابت السرعة k.
- $^\circ$ ماهي قيمة زمن نصف التفاعل $t_{1/2}$ ، وكم تصبح قيمته إذا كانت قيمة التركيز الابتدائي $^\circ$ $^\circ$ $^\circ$
 - 4- أحسب السرعة الابتدائية للتفاعل.
 - 5- ما هو الزمن اللازم لتفاعل %90 من التركيز الابتدائي ؟

ء م	العلاما	عناصر الإجابة						
	V	التمرين الأول:						
		I. استنتاج الأنطالبي:						
		$\Delta \text{H}_{\text{f}}^{\circ}(\text{H}_{2}\text{O}_{(\ell)}) = \frac{\Delta \text{H}_{3}^{\circ}}{2} = -286\text{kJ.mol}^{-1}$:3 من التفاعل رقم (
		2						
		$^{\circ}$ من التفاعل رقم 2: $^{\circ}$ من التفاعل رقم $^{\circ}$ $^$						
		= 2(-393,5) + 2(-286) - (-1400,7)						
		$=41,7 \text{ kJ.mol}^{-1}$						
		o من التفاعل رقم1 : /						
		$\Delta H_{f}^{\circ}(C_{2}H_{4(g)}) = \Delta H_{f}^{\circ}(C_{2}H_{4(g)}) + \Delta H_{1}^{\circ}$						
		$= 41,7 + (-128,5) = -86,8 \text{ kJ.mol}^{-1}$						
		II. 1- حساب كمية الحرارة تحت ضغط ثابت لاحتراق1 مول من الإيثان الغازي عند الدرجة						
		: 25 C°						
		$\Delta H_{\text{comb}}^{\circ} = Q_{p} = 2\Delta H_{f}^{\circ}(CO_{2(g)}) + 3\Delta H_{f}^{\circ}(H_{2}O_{(f)}) - \Delta H_{f}^{\circ}(C_{2}H_{6(g)})$						
		= 2(-393,5) + 3(-242) - (-86,8)						
		$=-1558, 2 \text{ kJ.mol}^{-1}$						
		2- حساب التغير في الطاقة الداخلية ∆U لتفاعل الاحتراق عند 298 K: - AH° - ALL - AN - ALL - AH° - AN - AT						
		$\Delta H_r^\circ = \Delta U + \Delta n_{(g)} RT \Rightarrow \Delta U = \Delta H_r^\circ - \Delta n_{(g)} RT$ $\Delta n_{(g)} = (2) - (1+3,5) = -2,5 \text{ mol}$						
		$\Delta U = -1558, 2 - (-2,5) \times 8,314 \times 298 \times 10^{-3}$						
		$\Delta U = -1552 \text{ kJ.mol}^{-1}$						
		3 - حساب العمل المنجز:						
	1	$\begin{vmatrix} \Delta U = Q_p + W \\ \Delta U - \Delta H_{comb}^{\circ} = W \end{vmatrix} \Rightarrow W = -1552 - (-1558.2) = 6,2 \text{ kJ}$						
	2/	$\left \Delta U - \Delta H_{comb}^{s} = W\right \rightarrow W = 1332 (1330.2) = 0.2 \text{ M}$						
	0	التمرين الثاني						
		I. 1- حساب الحرارة النوعية لانصهار الجليد L _f :						
		$\sum \mathbf{Q_i} = 0 \Rightarrow \mathbf{Q} + \mathbf{Q'} + \mathbf{Q''} = 0$ في نظام معزول يكون: $\mathbf{Q_i} = 0$						
		$\mathbf{Q} = (\mathbf{C}_{cal} + \mathbf{m}_e \mathbf{C}_e)(\mathbf{T}_f - \mathbf{T}_i)$: عقدها المسعر و محتواه : الحرارة التي يفقدها						
		$\mathbf{Q}' = \mathbf{m_g.L_f}$: کمیة الحرارة المستعملة لانصهار الجلید :						
		$Q'' = m_g \cdot c_e (T_f - 273)$: كمية الحرارة المستعملة لرفع درجة حرارة الماء الناتج من الجليد						

$$\begin{split} & \left(\begin{array}{c} C_{cal} + m_e c_e \right) \left(\begin{array}{c} T_f - T_i \right) + m_g . L_f + m_g . c_e \left(\begin{array}{c} T_f - 273 \end{array} \right) = 0 \\ \\ L_f = & - \frac{\left(\begin{array}{c} C_{cal} + m_e c_e \right) \left(\begin{array}{c} T_f - T_i \right) + m_g . c_e \left(\begin{array}{c} T_f - 273 \end{array} \right)}{m_g} \\ \\ = & - \frac{\left(\begin{array}{c} 130 + 146, 6 \times 4, 185 \right) \left(\begin{array}{c} -6, 8 \right) + 13.4, 185 \left(\begin{array}{c} 13, 6 \end{array} \right)}{13} = 332 J.g^{-1} \end{split} \end{split}$$

2- استنتج أنطالبي المولى لإنصهار الجليد ∆Hfus _

$$\Delta H_{\text{fiss}}^{\circ} = \text{M.L}_{\text{fiss}} = 18 \times 332 = 5,976 \text{ kJ.mol}^{-1}$$

 ΔH_{fus} كتابة تفاعل انصهار الجليد موضحا أمامه أنطالبي هذا التفاعل ΔH_{fus} :

$$\mathbf{H_2O_{(s)}} \longrightarrow \mathbf{H_2O_{(\ell)}}$$
 $\Delta H_{flus}^{\circ} = 5,97 \text{ kJ.mol}^{-1}$

I. حساب الحرارة المولية للتعديل Qp ثم تعريفها:

$$\sum \mathbf{Q}_{\mathbf{i}} = \mathbf{0} \implies \mathbf{Q} + \mathbf{Q}' = \mathbf{0}$$

🖜 في نظام يكون:

 $Q' = (C_{cal} + m_e c_e) (T_f - T_i)$: Q' observed in the lambda of Q' in the lam

 $Q = -Q' \Rightarrow Q = -(C_{cal} + m_e c_e) (T_f - T_i)$ = -(200,46+ 200×4,185)(5,5) = -5706 J

- حساب عدد المولات:

$$n = C_a V_a = 1 \times 100 \times 10^{-3} = 0,1 \text{ mol}$$

- الحرارة المولية للتعديل:

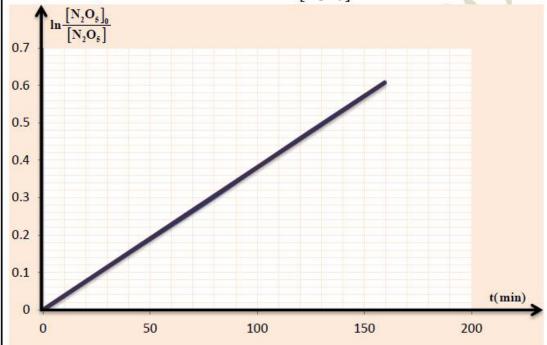
$$Q_p = \frac{Q}{n} = \frac{-5706}{0.1} = -57,06 \text{ kJ.mol}^{-1}$$

2- استنتاج الأنطالبي المولى للتعديل لتفاعل:

 $\Delta H_{\text{neut}}^{\circ} = Q_{\text{p}} = -57,03 \text{ kJ.mol}^{-1} : \text{HCl}_{(aq)} \cdot \text{NaOH}_{(aq)}$ تعدیل

3- كتابة معادلة كل تفاعل تعديل موضحا عليها الحرارة المولية:

$$HCl_{(aq)} + NaOH_{(aq)} \longrightarrow NaCl_{(aq)} + H_2O_{(\ell)} \qquad \Delta H_{neut}^{\circ} = -57,03 \, kJ.mol^{-1}$$


التمرين الثالث:

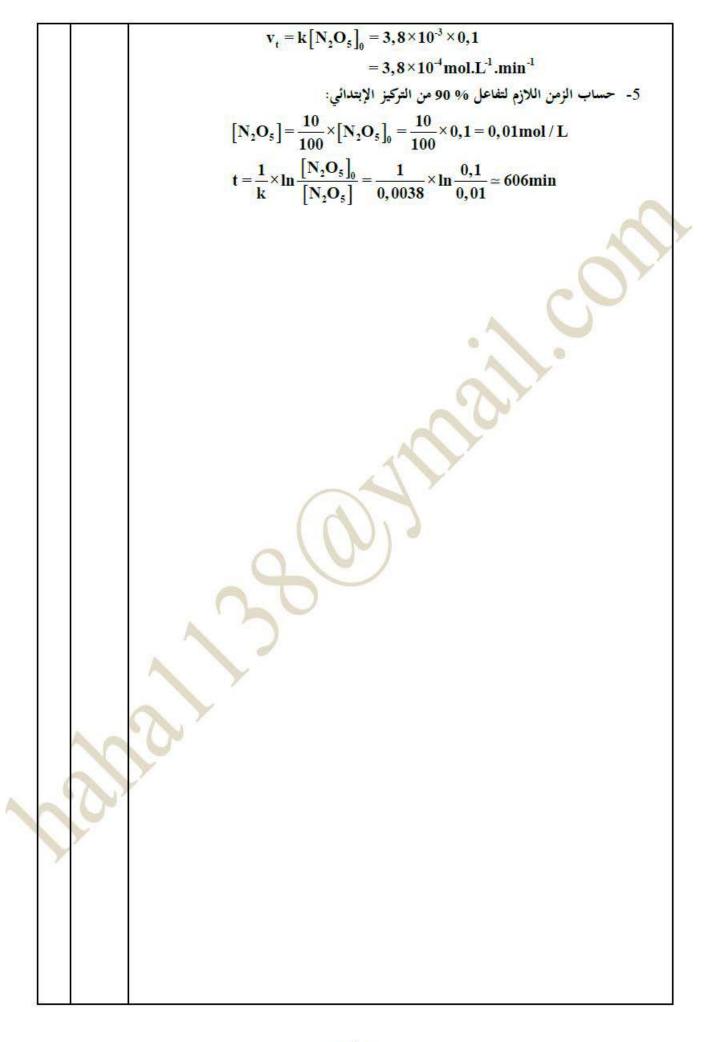
1- إثبات أن التفاعل من الرتبة الأولى:

إكمال الجدول:

t(min)	0	40	80	120	160
$\left[N_2O_5\right]\!\left(mol/L\right)$	0,100	0,086	0,074	0,063	0,054
$\ln \frac{\left[N_2 O_5\right]_0}{\left[N_2 O_5\right]} = f(t)$	0	0,15	0,3	0,46	0,61

$$: \ln \frac{\left[N_2 O_5\right]_0}{\left[N_2 O_5\right]} = f(t) \quad \bigcirc$$

- بما أن البيان عبارة عن خط مستقيم يمر من المبدأ وميله موجب فإن التفاعل من الرتبة
 الأولى.
 - 2- حساب k بيانيا:


$$\begin{aligned} \mathbf{k} &= \mathbf{tg} \, \alpha = \frac{\ln \frac{\left[\mathbf{N}_2 \mathbf{O}_5 \right]_0}{\left[\mathbf{N}_2 \mathbf{O}_5 \right]_2} - \ln \frac{\left[\mathbf{N}_2 \mathbf{O}_5 \right]_0}{\left[\mathbf{N}_2 \mathbf{O}_5 \right]_1}}{\mathbf{t}_2 - \mathbf{t}_1} \\ &= \frac{0.61 - 0.15}{160 - 40} = 3.8 \times 10^{-3} \text{min}^{-1} \end{aligned}$$

3- استنتاج t_{1/2}:

$$t_{1/2} = \frac{\ln 2}{k} = \frac{\ln 2}{3.8 \times 10^{-3}} = 182,40 \text{min}$$

قيمة t_{1/2} عند التركيز الإبتدائي 0,5mol/L هو: 180,40min لأن زمن نصف التفاعل لا يتعلق بالتركيز الابتدائي.

4- حساب السرعة الإبتدائية للتفاعل : vt

