#### المدة: ساعة ولحدة

## الفرض الثانس مادة: التكنولوجيا هندسة المصرائق

### التمرين الأول. (11 ن)

#### I. إليك جدول للأحماض الأمينية:

| Tyr             | Ile                | Cys             | Lys                                                     |                  |
|-----------------|--------------------|-----------------|---------------------------------------------------------|------------------|
| CH <sub>2</sub> | $HC-CH_3$ $C_2H_5$ | CH <sub>2</sub> | (CH <sub>2</sub> ) <sub>4</sub><br> <br>NH <sub>2</sub> | الحمض<br>الأميني |
| 2,2             | 2,36               | 1,96            | 2,18                                                    | pKa <sub>1</sub> |
| 9,11            | 9,68               | 10,28           | 8,95                                                    | pKa <sub>2</sub> |
| 10,07           |                    | 8,18            | 10,53                                                   | pKa <sub>R</sub> |

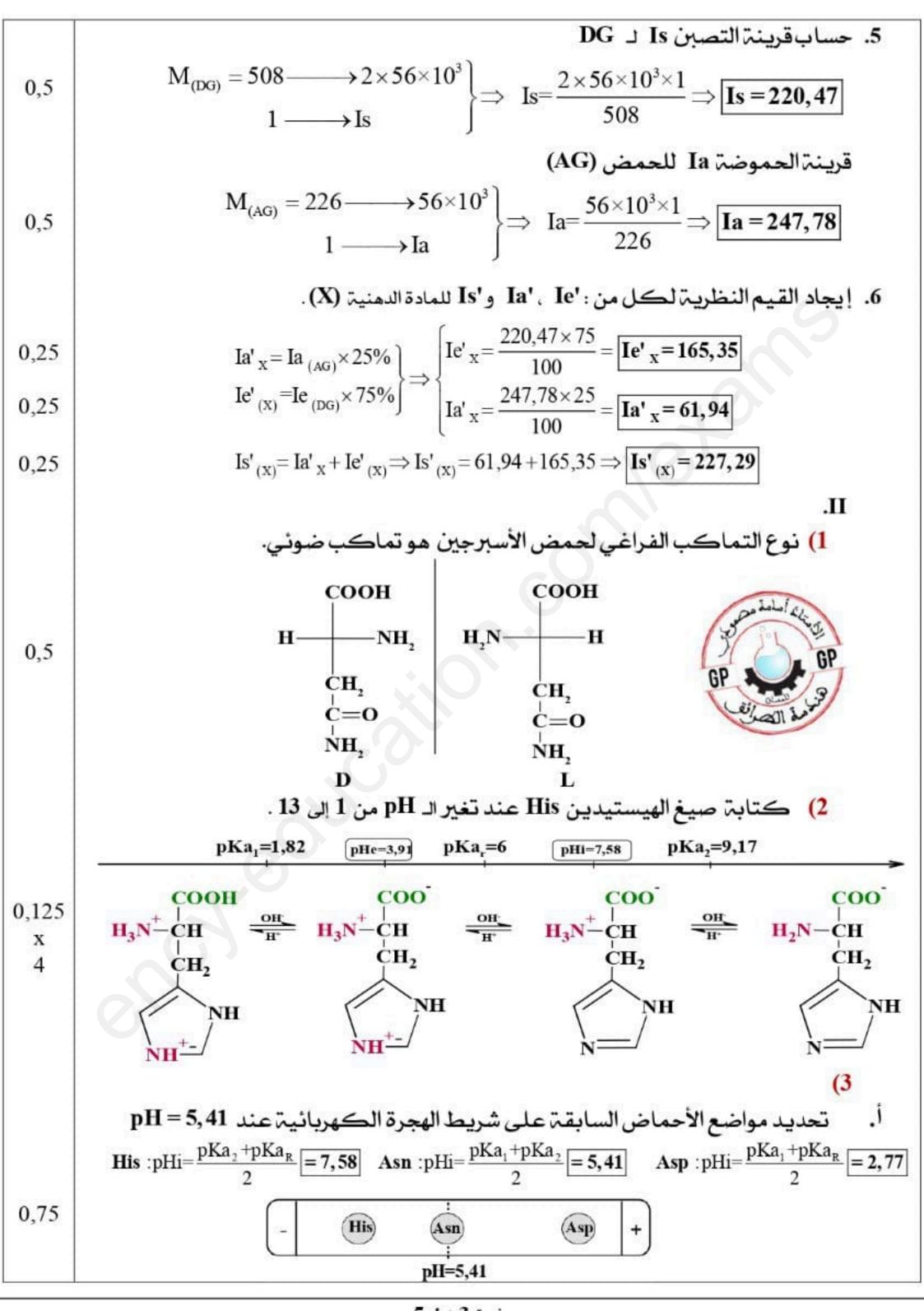
- 1) مثل بإسقاط فيشر حمض Ile في الصورة L
- 2) مثل الصيغ الأيونية Lys عند تغير مجال pH من 1 إلى 13.
- 3) نخضع هذه الأحماض إلى تقنية الهجرة الكهربائية عند 9=PH .
- أ. حدد مواضع كل الأحماض السابقة على شريط الهجرة الكهربائية.
- ب. ماهي الصيغ الأيونية و الصيغة التي يهاجربها حمض Lys عند 9-PH
  - II. لدينا رباعي البيبتيد: A-B-C-D يتكون من الأحماض السابقة.
    - PH=8 عند  $A^+$  الحمض A يتأين على شكل
- 🗷 الحمض B يشكل جسر أكسجيني مع حمض الفوسفوريك.
- مركب نشط ضوئيا. على مركب نشط ضوئيا.
  - 1. أكتب صيغة البيبتيد A-B-C-D و سمه.
  - 2. أكتب صيغة هذا البيبتيد عند pH=12.
  - 3. أعط ناتج تفاعل هذا البيبتيد بإنزيم الكيموتريبسين.

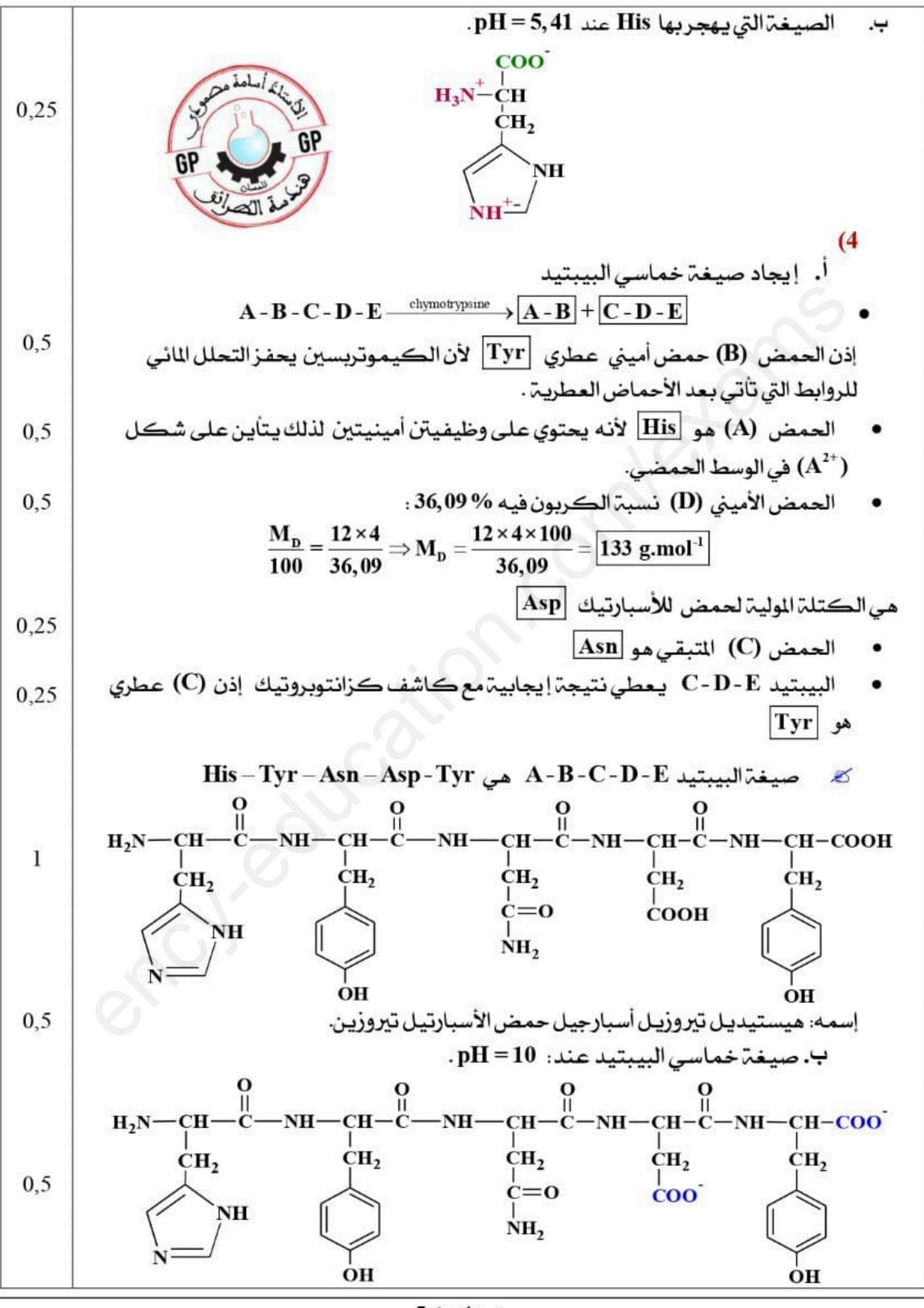
## **التمرين الثاني** (9 ن)

ثلاثي غليسيريد قرينة تصبنه: Is= 226,41 يحتوي على أربع روابط مضاعفة.

- 1) أحسب كتلته المولية؟
- 2) التحليل المائي لهذا الغليسيريد أعطى ثلاث أحماض دهنية AG3 ، AG2 ،AG1 على الترتيب
  - $ext{Ii=249,01}:$  الحمض الدهني  $ext{AG}_1$  رمزه:  $ext{Cn:}3\Delta^{8,11,14}$  قرينة يوده هي  $ext{\#}$
- ∴ AG2 قرينة حموضته Ia=247,78 و أكسدته تعطي: AG2 قرينة حموضته Ia=247,78 و أكسدته تعطي: CH3-(CH2)₃-COOH و AG
- أ. إستنتج الصيغ نصف المفصلة لـ AG3 ، AG2 ، AG1 و A ثم أكتب صيغة هذا الغليسيريد.
  - ب. أكتب تفاعل هلجنة الغليسريد الثلاثي بـ I2 و أحسب قرينة اليود Ii له.
    - ج. يمتاز الحمض AG2 بتماكب فراغي . مانوعه؛ و أكتب مماكباته.
- 3) زيت نباتي له Is'=215.56 يحتوي على %75 من ثلاثي الغليسيريد و %25 من حمض مشكل للغليسريد. هـ إستنتج الحمض المشكل للزيت النباتي
  - يعطى : H=1g/mol ، O=16g/mol ، I=127 g/mol ، K=39 g/mol

الأستاذ: أسامة مصموجي


BAC 2024


**BAC 2024** 

# الإجابة النموذجية لموضوع إختبار الفصل الثاني مادة التكنولوجيا هندسة الطرائق مارس 2024 تلمسان

| العلامة        | عناصرالإجابت                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                | التمرين الأول (6 نقاط)<br>I. الصيغة نصف المفصلة للمركبين (A) و (B):                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 0,25<br>x      | (A): $HC \equiv C - CH_3$ (B): $H_3C - C - CH_3$                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 2              | II. 1) إيجاد صيغ المركبات:                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                | OH (C): $H_3C-CH-CH_3$ (D): $H_3C-CH=CH_2$ (E): $H_3C-C-CH=CH_3$                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0,25<br>x      | (F): $H_3C$ — $C$ (G): $H_3C$ — $C$ (H): $H_3C$ — $CH_2$ —OH                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 10             | (I): $(J)$ : $(K)$ : $(K)$ :                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                | $(\mathbf{K}): \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$                                                                                                                                                                                                                                                                            |  |  |  |  |
| 0,5            | O—CH <sub>2</sub> -CH <sub>3</sub> أسم المركب (K): حمض البنزويك مادة حافظة.                                                                                                                                                                                                                                                                               |  |  |  |  |
| 0,5            | 3) يمكن الحصول مباشرة على:                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 0,25           | اً. ألكان إنطلاقا من المركب (B) $\frac{Z_{\rm n}}{H_{\rm Cl}}$ $\frac{Z_{\rm HCl}}{H_{\rm Cl}}$ $\frac{Z_{\rm HCl}}{H_{\rm CH}}$ $\frac{Z_{\rm H}}{H_{\rm Cl}}$ |  |  |  |  |
| 0,25           | ب. مشتق هالوجيني إنطلاقا من المركب $(C)$ : $(C) + PCl_5 \longrightarrow H_3C-CH-CH_3+POCl_3+HCl$                                                                                                                                                                                                                                                          |  |  |  |  |
| -,2            | Cl                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 0,25           | ج. ألكان إنطلاقا من المركب $(E)$ : $ (E) \xrightarrow{\Delta} CH_4 + CO_2 $                                                                                                                                                                                                                                                                               |  |  |  |  |
|                | <mark>4)</mark><br>أيجاد صيغ المركبات (M) و (P).                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0,25<br>x<br>2 | (M): $H_3C-C=CH_2$ $C=CH_2$ $C=CH_2$ $C=CH_3$ $C=CH_3$ $C=C_2H_5$                                                                                                                                                                                                                                                                                         |  |  |  |  |

0,25 بى نوع تفاعل البلمرة: بلمرة بالضم. ج مقطع من هذا البوليمير يتكون من 3 وحدات بنائية: 0,5 CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—C  $O-C_2H_5$   $O-C_2H_5$   $O-C_2H_5$ د) حساب درجة البلمرة  $n = \frac{M_{poly}}{M_{\textit{Mono}}} \Rightarrow \begin{cases} M_{\textit{Mono}} = 12 \times 5 + 16 + 14 = \boxed{86 \text{ g/mol}} \\ n = \frac{430 \times 10^3}{86} & \boxed{n = 5000} \end{cases}$ 0,5 التمرين الثاني. (11 نقاط) 0,5 1. إسم التفاعل: الهدرجة الهدف منه الحصول على مادة دهنية صلبة. 2. حساب الكتلة المولية لـ DG .  $\begin{array}{c} M_{\text{(DG)}} \longrightarrow 2 \times 254 \\ 100 \longrightarrow 100 \end{array} \Rightarrow M_{\text{(DG)}} = \frac{2 \times 254 \times 100}{100} = \boxed{508 \text{ g/mol}}$ 0,5 3. استنتاج صيغة الحمض (AG) المكون لـ DG:  $2M_{AG} + M_{Gly} = M_{DG} + 2M_{H_2O} \Rightarrow M_{AG} = \frac{M_{DG} + 2M_{H_2O} - M_{Gly}}{2}$ 0,25  $M_{AG} = \frac{508+36-92}{2} = 226 \, \text{g/mol}$  $M_{AG} = M(C_nH_{2n-2}O_2) \Rightarrow 14n + 30 = 226 \Rightarrow \boxed{n = 14}$ 0,25  $AG \xrightarrow{\text{KMnO}_4} \text{CH}_3 \text{-(CH}_2)_3 \text{-COOH} + \text{HOOC-(CH}_2)_n \text{-COOH}$ acide pentanoique 0,25  $\mathbf{AG}: \mathrm{CH}_3\text{-}(\mathrm{CH}_2)_3\text{-}\mathrm{CH}=\mathrm{CH}\text{-}(\mathrm{CH}_2)_n\text{-}\mathrm{COOH}$ كربونات الحمض ه و 5+2+n=14: AG 0,25 n = 7:  $\Rightarrow AG : CH_3 - (CH_2)_3 - CH = CH - (CH_2)_7 - COOH$ 4. صيغة الغليسيريد الثنائي:  $\mathbf{H_{2}C-O-C} - (\mathbf{CH_{2}})_{7} - \mathbf{CH} = \mathbf{CH} - (\mathbf{CH_{2}})_{3} - \mathbf{CH_{3}}$   $\begin{vmatrix} \mathbf{O} \\ \mathbf{O} \\ \mathbf{HC-O-C} - (\mathbf{CH_{2}})_{7} - \mathbf{CH} = \mathbf{CH} - (\mathbf{CH_{2}})_{3} - \mathbf{CH_{3}} \end{vmatrix}$ 0,5 н,с-он





| ١ | (3 نقاط) | الثالث. | لتمرين |
|---|----------|---------|--------|
| - |          |         |        |

1. حساب كمية المادة:

$$\begin{array}{c|c}
0,5 \\
x \\
2
\end{array}
\qquad P_1V_1 = nRT_1 \Rightarrow n = \frac{P_1V_1}{RT_1} = \frac{1 \times 1,01325 \times 10^5 \times 10 \times 10^{-3}}{152,34 \times 8,314} \Rightarrow \boxed{\mathbf{n} = \mathbf{0,8} \, \mathbf{mol}}$$

$$V_2$$
: حساب الحجم النهائي: 2

$$P_{2}V_{2} = nRT_{2} \Rightarrow V_{2} = \frac{nRT_{2}}{P_{2}} = \frac{0,8 \times 8,314 \times 761,7}{10 \times 1,01325 \times 10^{5}} \Rightarrow V_{2} = 5 \times 10^{-3} \text{ m}^{3} = \boxed{\textbf{5 L}}$$

$$\Delta U=W+Q$$

$$Q=0 \Rightarrow \Delta U=W=n.C_v.\Delta T$$

$$\Rightarrow \Delta U=W=0.8\times 21,686\times (761,7-152,34)$$

$$\Rightarrow \Delta U=W=10571,66J=10,57kJ$$

0,5

X

2